Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3y^5z^7=2^5,x^3y^2z=2^2=>x^3.y^5.z^7=2^3.x^3y^2z=>y^3z^6=2^3.\)\(< =>yz^2=2\)
\(=>y^5z^{10}=2^5=x^3.y^5.z^7=>x^3=z^3=>x=z=>xyz=yz^2=2\)
Em cảm ơn anh , cậu EIHWAS làm thiếu một giá trị kìa , sửa lại đi cậu .
vì \(x^2\ge0\Rightarrow\left(x^2-1\right)>\left(x^2-4\right)>\left(x^2-7\right)>\left(x^2>10\right)\)
để \(\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)
ta xét hai trường hợp
TH1: (x2-10) âm và (x2-1),(x2-4),(x2-7) dương.ta có
\(\Rightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Rightarrow x^2=9\Rightarrow x=\left\{\pm3\right\}\)
TH2: (x2-1) dương và (x2-4),(x2-7),(x2-10) âm ta có
\(\Rightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Rightarrow x^2=\left\{\varnothing\right\}\Rightarrow x=\varnothing}\)
vậy x=+-3
Câu hỏi của Futeruno Kanzuki - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo bài làm ở link này nhé!!!
tìm số nghyên x sao cho (x2-1)(x2-4)(x2-7)(x2-10)<0 (1)
Trả lời:
TH 1: x^2>10
=>BPT (1) không thỏa mãn với mọi x thỏa điều kiện x^2>10
TH2: 7<x^2<10
=> BPT (1) thỏa điều kiện => x^2 ={8,9} =>x=+3,-3 (x là số nguyên)
TH3: 4<x^2<7
=> BPT (1) không thỏa mãn với mọi x thỏa điều kiện 4<x^2<7
TH4: 1<x^2<4
BPT (1) thỏa điều kiện => x^2={2,3} => không tìm được nghiệm x nguyên thỏa mãn các yêu cầu trong trường hợp này.
TH5: x^2<1 không cần xét vì không tìm được nghiệm x nguyên thỏa điều kiện
Đáp số: x={-3,+3}
Với x^2<=1
=>(x^2-1)<=0,(x^2-4)<=0
(x^2-7)<=0,(x^2-10<=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
+)với x^2>=10
=>(x^2-1)>=0,x^2-4>=0
x^2-7>=0,x^2-10>=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
Vậy 1<x^2<10
vì x nguyên nên chỉ có 4 trường hợp:
x=2,x=3,x=-2,x=-3
Thử vào thì ra x=3 hoặc x=-3.
- Do (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)
2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}
3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x2 - 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên phair cos thừa số be hơn 0.
=> 0 < x2 < 11
Từ 3 điều trên ==> x2 = 9 => x = 3
de bieu thuc tren <0=>co 1 hoac ba bt <0