K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

vì \(x^2\ge0\Rightarrow\left(x^2-1\right)>\left(x^2-4\right)>\left(x^2-7\right)>\left(x^2>10\right)\)

để \(\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)

ta xét hai trường hợp

TH1: (x2-10) âm và (x2-1),(x2-4),(x2-7) dương.ta có

\(\Rightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Rightarrow x^2=9\Rightarrow x=\left\{\pm3\right\}\)

TH2: (x2-1) dương và (x2-4),(x2-7),(x2-10) âm ta có

\(\Rightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Rightarrow x^2=\left\{\varnothing\right\}\Rightarrow x=\varnothing}\)

vậy x=+-3

28 tháng 10 2018

Câu hỏi của Futeruno Kanzuki - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo bài làm ở link này nhé!!!

20 tháng 9 2017

Bài làm

Ta có tích của 4 số  x^2-10;x^2-7;x^2-4;x^2-1 là số âm nên phải có 1 hoặc 3 số âm,mà x^2-10<x^2-7<x^2-4<x^2-1

xét 2 TH

+)có 1 số âm,3 số dương

x^2-10<0<x^2-7=>7<x^2<10^2=>x^2=9=>x=+3

+)có 3 số âm,1 số dương

x^2-4<0<x^2-1=>1<x^2<4,mà a là số nguyên nên x không tồn tại

vậy x=+3

24 tháng 2 2015

Đặt A=(x^2-1)*(x^2-4)*(x^2-7)*(x^2-10)

^-^Với x^2<=1

=>(x^2-1)<=0, (x^2-4)<0, (x^2-7)<0, (x^2-10)<0

=> A>=0 (loại)

^-^Với x^2>=10

=>x^2-1>0, x^2-4>0, x^2-7>0, x^2-10>=0

=>A>=0(loại)

=>1<x^2<10 Mà x^2 là số chính phương

=>x^2=4 hoặc x^2=9

Với x^2=4 =>A=3*0*(-3)*6...(thay vào bthuc)

               <=>A=0(loại)

Với x^2=9 =>A=8*5*2*(-1)

               <=>A=-80

                => A <0 (thỏa mãn)

x^2=9 => x=3 hoạc x=-3

 

Thấy đúng thì like nhá.............

19 tháng 1 2017

Đg oy đó pn k cho mk nhá✌✌✌

18 tháng 5 2017

Xét thấy tích 4 số là số âm 

=> có 1 hoặc 3 số là số âm trong tích đó :

Xét từng trường hợp ,ta có :

+ Có 1 số âm :

x2 - 10 < x2 - 7 => x2 - 10 < 0 < x2 - 7

=> 7 < x2 < 10 => x2 = 9 => x = 3 hoặc -3

+ Có 3 số âm , 1 số dương

x2 - 4 < x2 - 1 => 1 < x2 < 4

=> x không có giá trị thõa mãn

Vậy x = 3 ; -3

3 tháng 11 2018

bạn tự hỏi, tự trả lời à

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

25 tháng 3 2021

tìm số nghyên x sao cho (x2-1)(x2-4)(x2-7)(x2-10)<0 (1)

Trả lời:

TH 1: x^2>10 

=>BPT (1) không thỏa mãn với mọi x thỏa điều kiện x^2>10

TH2:  7<x^2<10 

=> BPT (1) thỏa điều kiện => x^2 ={8,9} =>x=+3,-3 (x là số nguyên)

TH3: 4<x^2<7

=> BPT (1) không thỏa mãn với mọi x thỏa điều kiện 4<x^2<7

TH4: 1<x^2<4

BPT (1) thỏa điều kiện => x^2={2,3} => không tìm được nghiệm x nguyên thỏa mãn các yêu cầu trong trường hợp này.

TH5: x^2<1 không cần xét vì không tìm được nghiệm x nguyên thỏa điều kiện

Đáp số: x={-3,+3}