Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 3x - 6 - (8x + 4) - (10x + 15) = 50
=> 3x - 6 - 8x - 4 - 10x - 15 = 50
=> (3x - 8x - 10x) = 6+ 4 + 15 + 50
=> -15x = 75 => x = 75 : (-15) = -5
c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)
+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3
+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1
Vậy x = 5/3 hoặc x = 1
a) (n-1)n+11-(n-1)n=0
(n-1)n(n-1)11-(n-1)n=0
(n-1)n[(n-1)11-1]=0
(n-1)n=0 hoặc (n-1)11-1=0
n-1=0 hoặc (n-1)11 =1
n=1 hoặc n-1 =1
n=1 hoặc n =2
\(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\)
\(\Rightarrow\left(x+2\right)^{n+11}-\left(x+2\right)^{n+1}=0\)
\(\Rightarrow\left(x+2\right)^{n+1}\left[\left(x+2\right)^{10}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^{n+1}=0\\\left(x+2\right)^{10}-1=0\end{matrix}\right.\)
+) \(\left(x+2\right)^{n+1}=0\Rightarrow x+2=0\Rightarrow x=-2\)
+) \(\left(x+2\right)^{10}-1=0\Rightarrow\left(x+2\right)^{10}=1\)
\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-2;-1;-3\right\}\)
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
Lời giải:
$13(xy^2)^nx^{m-1}y^3=13x^{m+n-1}y^{2n+3}$
$9(x^2y)^3xy^{11-m}=9x^7y^{14-m}$
Để 2 đơn thức trên đồng dạng thì:
$m+n-1=7; 2n+3=14-m$
$\Rightarrow m+n=8; 2n+m = 11$
$\Rightarrow n=3; m=5$
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
(n-1)n+11-(n-1)n=0
=>(n-1)n.[(n-1)11-1]=0
=>(n-1)n=0=>n-1=0=>n=1
hoặc (n-1)11-1=0=>(n-1)11=1=>n-1=1=>n=2
vậy n=1;2
(n - 1)n + 11 - (n - 1)n = 0
=> (n - 1)n + 11 = (n - 1)n
=> n - 1 = 0 và n - 1 = 1 (vì 1 mũ bao nhiêu cũng bằng 1)
=> n = 0 + 1 = 1 và n = 1 + 1 = 2
lúc nãy làm thiếu
(\(x\) + 2)n+1 = ( \(x\) + 2)n+11
(\(x+2\))n+1 - ( \(x\) + 2)n+11 = 0
(\(x\) + 2)n+1.( 1 + (\(x\) + 2)10) = 0
(\(x\) + 2)10 + 1 > 0 ∀ \(x\)
=> (\(x\) + 2)n+1 = 0 ⇒ \(x\) + 2 = 0 ⇒ \(x\) = -2
vậy \(x\) = -2