Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
a) \(x\left(5+3x\right)-\left(x+1\right)\left(3x-2\right)=12\)
\(5x+3x^2-3x^2+2x-3x+2=12\)
\(4x=10\)
\(x=\frac{5}{2}\)
vậy \(x=\frac{5}{2}\)
\(13x\left(x-8\right)-x+8=0\)
\(13x\left(x-8\right)-\left(x-8\right)=0\)
\(\left(13x-1\right)\left(x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}13x-1=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{13}\\x=8\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{1}{13}\\x=8\end{cases}}\)
a. 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) = 0
<=> 3(6x2-5x+1)-(18x2-29x+3)=0
<=> 14x=0
<=> x=0
b. (x - 3)(x - 5) + 3 (x - 1) = (x - 1)(x - 3)
<=> (x-3)(x-5-x+1)+3(x-1)=0
<=> -4(x-3)+3(x-1)=0
<=> -x+9=0
<=> x=9
c. (x - 1)(x - 2) - (x + 2)(x + 1) = 8
<=> x2-3x+2-(x2+3x+2)=8
<=> -6x=8
<=> \(x=\frac{-4}{3}\)
a/ Ta có : \(49.x^2-4=0\)
\(\Rightarrow49x^2=4\)
\(\Rightarrow x^2=\frac{4}{49}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{2}{7}\end{cases}}\)
b/ \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)
\(\left(x+3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)=11\)
\(\Rightarrow\left(x^2+2.3.x+3^2\right)-\left(x^2-2^2\right)=11\)
\(\Rightarrow x^2+6x+9-x^2+4=11\)
\(\Rightarrow6x+13=11\)
\(\Rightarrow6x=11-13\)
\(\Rightarrow x=\frac{-2}{6}=\frac{-1}{3}\)
c/ \(\left(2x+1\right)^2-\left(x-3\right)^2-3\left(x+5\right)\left(x-5\right)=5\)
\(\Rightarrow\left(2x+1\right)\left(2x+1\right)-\left(x-3\right)\left(x-3\right)-3\left[\left(x+5\right)\left(x-5\right)\right]=5\)
\(\Rightarrow\left(4x^2+2.2x+1\right)-\left(x^2-2.3x+9\right)-3\left(x^2-25\right)\)\(=5\)
\(\Rightarrow\left(4x^2+4x+1\right)-\left(x^2-6x+9\right)-\left(3x^2-75\right)=5\)
\(\Rightarrow4x^2+4x+1-x^2+6x-9-3x^2+75=5\)
\(\Rightarrow\left(4x^2-x^2-3x^2\right)+\left(4x+6x\right)+\left(1-9+75\right)=5\)
\(\Rightarrow10x+67=5\)
\(\Rightarrow10x=5-67=-62\)
\(\Rightarrow x=\frac{-62}{10}=\frac{-31}{5}\)
d/ \(\left(3x+1\right)\left(3x-1\right)=8\)
\(\Rightarrow9x^2-1=8\)
\(\Rightarrow9x^2=8+1=9\)
\(\Rightarrow x^2=\frac{9}{9}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Ai đó bấm hộ mình cái nút đúng đi!
Ta có : 49x2 - 4 = 0
=> 49x2 = 4
=> x2 = 196
=> x2 = 142 ; (-14)2
=> x = 14 ; -14
1)
\(\left(x-3\right)^2+\left(x+5\right)\left(2-x\right)=-\left(9x-19\right)\)
\(-\left(9x-19\right)=0\)
\(9x=-19\)
\(\Rightarrow x=\frac{19}{9}=2\frac{1}{9}\)
\(x_1+x_2=-\frac{b}{a}=-2\)
\(x_1.x_2=\frac{c}{a}=-8\)
\(x\in-4;2\)
a) \(3x^3-6x^2=0\)
\(3x^2\left(x-2\right)=0\)
\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) \(x\left(x-4\right)-12x+48=0\)
\(x^2-4x-12x+48=0\)
\(x^2-16x+48=0\)
\(\left(x-12\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) Viết thiếu nha :v
d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)
\(2x^2-10x-x^2-2x^2-3x=16\)
\(-13x=16\)
\(x=-\frac{16}{13}\)
e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)
\(4x^2-1-x^2+2x-1=-3\)
\(3x^2-2+2x=-3\)
\(3x^2-2+2x+3=0\)
\(3x^2+1+2x=0\)
Vì \(3x^2+1+2x>0\)nên:
\(x\in\varnothing\)
A) 3x3 - 6x2 = 0
=> 3x2(x - 2) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) x(x - 4) - 12x + 48 = 0
=> x(x - 4) - 12(x - 4) = 0
=> (x - 12)(x - 4) = 0
=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8