K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 } 

5 tháng 8 2018

a/ \(x-8\sqrt{x}-9=0\)

<=> \(\left(\sqrt{x}\right)^2-2\sqrt{x}.4+4^2-25=0\)

<=> \(\left(\sqrt{x}-4\right)^2-5^2=0\)

<=> \(\left(\sqrt{x}-4-5\right)\left(\sqrt{x}-4+5\right)=0\)

<=> \(\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)

Mà \(\sqrt{x}\ge0\)<=> \(\sqrt{x}+1\ge1>0\)

=> \(\sqrt{x}-9=0\)

<=> \(\sqrt{x}=9\)

<=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

b/ Bạn coi lại đề giùm mình nhé.

17 tháng 10 2020

Bài 2: Tìm x

a) Ta có: \(4x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow4x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-\frac{1}{4}\right\}\)

b) Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-1-3\right)\left(3x-1+3\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=4\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{4}{3};-\frac{2}{3}\right\}\)

c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\right)=0\)

\(x^2+3x+5>0\forall x\)

nên x-2=0

hay x=2

Vậy: x=2

2 tháng 2 2018

a) \(\left(x-1\right)+x\left(4-x\right)\)= 0

\(\Leftrightarrow\)\(x-1+4x-x^2\)  = 0

\(\Leftrightarrow\)\(-x^2 +5x-1=0\)

\(\Leftrightarrow-x^2+5x=1\)

\(\Leftrightarrow x\left(5-x\right)=1\)

từ đó tìm x

b) \(x^2\left(x-1\right)-2x\left(x-3\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow x^3-x^2-2x^2+6x-9x+9=0\)

\(\Leftrightarrow x^3-3x^2-3x+9=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3\right)=0\)

\(\orbr{\begin{cases}x-3=0\\x^2-3=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=\sqrt{3},-\sqrt{3}\end{cases}}\)

17 tháng 9 2018

\(a)\)\(x^3-x^2-x+1=0\)

\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

Vậy \(x=1\) hoặc \(x=-1\)

Chúc bạn học tốt ~ 

17 tháng 9 2018

a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0 

\(\Leftrightarrow x=1\)

11 tháng 8 2016

\(b,\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow x^4-18x^2-12x+80=0\)

\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2-14x-40\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3-4x^2+6x^2-24x+10-40\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[x^2\left(x-4\right)+6x\left(x-4\right)+10\left(x-4\right)\right]\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^2+6x+10\right)\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\left(x+3\right)^2+1\right]\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Vậy \(S=\left\{2;4\right\}\)

11 tháng 8 2016

\(a,x^4+x^2+6x-8=0\Leftrightarrow x^4+2x^2+1-x^2+6x-9=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\Leftrightarrow\left(x^2+x-2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)

Vậy \(S=\left\{1;-2\right\}\)

16 tháng 7 2019

a. 16a2 - 49.( b - c )2

= ( 4a )2 - 72.( b - c )2

= ( 4a )2 - [ 7.( b - c ) ]2

= ( 4a )2 - ( 7b - 7c )2

= ( 4a - 7b + 7c ).( 4a + 7b - 7c )

b. ( ax + by )2 - ( ax - by )2

=( ax + by + ax - by ).( ax + by - ax + by )

= 2ax . 2by

= 2.( ax + by )

c.a6 - 1

= ( a3 )2 - 1

= ( a3 - 1 ).( a3 + 1 )

= ( a - 1 ).( a2 + a + 1 ).( a + 1 ).( a2 - a + 1 )

d. a8 - b8

= ( a4 )2 - ( b4 )2

= ( a4 - b4 ).( a4 + b4 )

= [ ( a2 )2 - ( b2 )2 ].( a4 + b4 )

= ( a2 - b2 ).( a2 + b2 ).( a4 + b4 )

= ( a - b ).( a + b ).( a2 + b2 ).( a4 + b4 )

B2

( x - 4 )2 - 36 = 0

\(\Leftrightarrow\) ( x - 4 )2 = 36

\(\Leftrightarrow\) ( x - 4 )2 = 62

\(\Leftrightarrow\) x + 4 = \(\pm\) 6

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)

Vậy x = 10 , x = -2

b. ( x - 8 )2 = 121

\(\Leftrightarrow\) ( x - 8 )2 = 112

\(\Leftrightarrow\) x - 8 = \(\pm\)11

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-8=11\\x-8=-11\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=19\\x=-3\end{cases}}\)

Vậy x = 19 , x = -3

c. x2 + 8x + 16 = 0

\(\Leftrightarrow\)x2 + 2.4x + 42 = 0

\(\Leftrightarrow\) ( x + 4 )2 = 0

\(\Leftrightarrow\) x + 4 = 0

\(\Leftrightarrow\) x = -4

Vậy x = -4

d. 4x2 - 12x = - 9

\(\Leftrightarrow\)( 2x )2 - 2.2.x.3 + 32 = 0

\(\Leftrightarrow\) ( 2x - 3 )2 = 0

\(\Leftrightarrow\) 2x - 3 = 0

\(\Leftrightarrow\) 2x = 3

\(\Leftrightarrow\) \(x=\frac{3}{2}\)

Vậy x = \(\frac{3}{2}\)