K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(b,\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow x^4-18x^2-12x+80=0\)

\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2-14x-40\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3-4x^2+6x^2-24x+10-40\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[x^2\left(x-4\right)+6x\left(x-4\right)+10\left(x-4\right)\right]\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^2+6x+10\right)\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\left(x+3\right)^2+1\right]\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Vậy \(S=\left\{2;4\right\}\)

11 tháng 8 2016

\(a,x^4+x^2+6x-8=0\Leftrightarrow x^4+2x^2+1-x^2+6x-9=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\Leftrightarrow\left(x^2+x-2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)

Vậy \(S=\left\{1;-2\right\}\)

8 tháng 8 2016

d) <=>x2-5x-x+5=0

<=>x(x-5)-(x-5)=0

<=>(x-5)(x-1)=0

<=>x=5 hoặc x=1

9 tháng 8 2016

thank nha

8 tháng 7 2017

Bài 4:

a, \(x^3+12x^2+48x+64=x^3+4x^2+8x^2+32x+16x+64\)

\(=x^2.\left(x+4\right)+8x.\left(x+4\right)+16.\left(x+4\right)\)

\(=\left(x+4\right).\left(x^2+8x+16\right)=\left(x+4\right).\left(x^2+4x+4x+16\right)\)

\(=\left(x+4\right).\left(x+4\right)^2=\left(x+4\right)^3\)(1)

Thay \(x=6\) vào (1) ta được:

\(\left(6+4\right)^3=10^3=1000\)

Vậy...........

b, \(x^3-6x^2+12x-8=x^3-2x^2-4x^2+8x+4x-8\)

\(=x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)\)

\(=\left(x-2\right).\left(x^2-4x+4\right)=\left(x-2\right).\left(x^2-2x-2x+4\right)\)

\(=\left(x-2\right).\left(x-2\right)^2=\left(x-2\right)^3\)(2)

Thay \(x=22\) vào (2) ta được:

\(\left(22-2\right)^3=20^3=8000\)

Vậy.............

Chúc bạn học tốt!!!

8 tháng 7 2017

Bài 2:

a, \(\left(x+9\right)^3=27=3^3\)

\(\Rightarrow x+9=3\Rightarrow x=-6\)

Vậy.........

b, \(8-12x-x^3+6x^2=-64\)

\(\Rightarrow-\left(x^3-6x^2+12x-8\right)=-64\)

\(\Rightarrow x^3-2x^2-4x^2+8x+4x-8=64\)

\(\Rightarrow x^2.\left(x-2\right)-4x.\left(x-2\right)+4.\left(x-2\right)=64\)

\(\Rightarrow\left(x-2\right).\left(x^2-4x+4\right)=64\)

\(\Rightarrow\left(x-2\right).\left(x^2-2x-2x+4\right)=64\)

\(\Rightarrow\left(x-2\right).\left(x-2\right)^2=64\)

\(\Rightarrow\left(x-2\right)^3=4^3\Rightarrow x-2=4\Rightarrow x=6\)

Vậy............

Chúc bạn học tốt!!!

\(a,9\left(2x+1\right)=4\left(x-5\right)^2\)

\(4x^2-40x+100=18x+9\)

\(4x^2-58x+91=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)

\(b,x^3-4x^2-12x+27=0\)

\(\left(x+3\right)\left(x^2-7x+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}}\)

\(c,x^3+3x^2-6x-8=0\)

\(\left(x+4\right)\left(x-2\right)\left(x+1\right)=0\)

\(Th1:x+4=0\Leftrightarrow x=-4\)

\(Th2:x-2=0\Leftrightarrow x=2\)

\(Th3:x+1=0\Leftrightarrow x=-1\)

5 tháng 3 2020

\(a,9.\left(2x+1\right)=4.\left(x-5\right)^2\)

\(< =>4x^2-40x+100=18x+9\)

\(< =>4x^2+58x+91=0\)

\(< =>\orbr{\begin{cases}x=\frac{29-3\sqrt{53}}{4}\\x=\frac{29+3\sqrt{53}}{4}\end{cases}}\)

\(b,x^3-4x^2-12x+27=0\)

\(< =>\left(x+3\right)\left(x^2-7x+9\right)=0\)

\(< =>\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)

24 tháng 10 2017

mk ko bt 123

3 tháng 8 2016

a)\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\5x-13=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{13}{5}\end{array}\right.\)

b)\(6x^4=9x^3\Leftrightarrow6x^4-9x^3=0\Leftrightarrow3x^3\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}3x^3=0\\2x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{3}{2}\end{array}\right.\)

 

 

3 tháng 8 2016

c)\(\left(x-2\right)^2-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x-2\right)^2=4x^2+12x+9\)

\(\Leftrightarrow\left(x-2\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow x-2=2x+3\)

\(\Leftrightarrow-x=5\Leftrightarrow x=-5\)

14 tháng 8 2016

a) (x-2)- 6(x+1)2 - x3 + 12 = 0 

<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0

<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0

<=> -12x2+4=0

<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)

vậy pt có 2 nghiệm....

b) x3 - 6x2 + 12x - 8 = 0 

<=> (x3-2x2)-(4x2-8x)+(4x+8)=0

<=> (x-2)(x2-4x+4)=(x-2)3=0

=> x=2 là nghiệm

c) 8x3 - 12x2 + 6x - 1 = 0

<=> (2x-1)3=0

<=> x=1/2

14 tháng 8 2016

a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)

\(\Leftrightarrow-12x^2-2=0\)

\(\Leftrightarrow-2\left(6x^2+1\right)=0\)

\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)

Vậy không có giá trị nào của x thỏa mãn pt

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy x=2

c) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(=\frac{1}{2}\)

16 tháng 8 2019

d) \(4x^2-9-x\left(2x-3\right)=0\)

\(\Leftrightarrow4x^2-9-2x^2+3x=0\)

\(\Leftrightarrow2x^2+3x-9=0\)

\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)

16 tháng 8 2019

e) \(x^3+5x^2+9x=-45\)

\(\Leftrightarrow x^3+5x^2+9x+45=0\)

\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)

1 tháng 10 2020

a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)

TH1 : x = 12 ; TH2 : x = 2 

b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

TH1 : x = 8 ; TH2 : x = -3 

c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)

TH1 : x = -1/2 ; TH2 : x = 7/2

d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)

Tương tự HĐT thôi :)