Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(=4x^2+1-4x+\left(x^2+9+6x\right)-5\left(x^2-7^2\right)=0\)
\(=4x^2+1-4x+x^2+9+6x-5x^2+245=0\)
\(=\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+245\right)=0\)
\(=2x+255=0\)
\(\Rightarrow2x=-255\)
\(x=-127,5\)
(2x-1)^2+(x+3)^2-5(x+7)(x-7)=0
=>4x2-4x+1+x2+6x+9+245-5x2=0
=>(4x2+x2-5x2)+(6x-4x)+(1+9+245)=0
=>2x+255=0
=>2x=-255 <=>x=-255/2
\(x^2\left(x-7\right)-9\left(x-7\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)\left(x-7\right)=0\)
\(\Rightarrow x+3=0\) hoặc \(x-3=0\) hoặc \(x-7=0\)
\(\Rightarrow x\in\left\{-3;3;7\right\}\)
Vậy \(x\in\left\{-3;3;7\right\}\)
(x-1)2+(x+3)2-5(x+7)(x-7)=0
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-3x^2+4x+255=0\)
\(\Leftrightarrow-3\left(x^2-\frac{4}{3}x\right)+255=0\)
\(\Leftrightarrow-3\left(x^2-2.x.\frac{2}{3}+\frac{4}{9}\right)+3.\frac{4}{9}+255=0\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2+\frac{769}{3}\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2=-\frac{769}{3}\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2=\frac{769}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{769}{9}}\\x-\frac{2}{3}=-\sqrt{\frac{769}{9}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{\sqrt{769}+2}{3}\\x=-\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{2-\sqrt{769}}{3}\end{cases}}\)
Vậy \(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{769}+2}{3}\\x=\frac{2-\sqrt{769}}{3}\end{cases}}\)
x^2 -2x = 24
=> x^2 - 2x - 24=0
=>x^2 -8x+6x - 24 = 0
=> ( x^2- 8x)+( 6x-24) = 0
=> x(x-8) + 6(x-8) = 0
=> (x+6)(x-8)=0
=>\(\orbr{\begin{cases}x=-6\\x=8\end{cases}}\)
\(a,\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=0\)
\(x^2-3x+7x-21-x^2-5x+x+5=0\)
\(-16=0\)
vậy pt vô nghiệm
\(b,\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(6x^2-2x+21x-7-6x^2-6x+5x+5=16\)
\(18x=18\)
\(x=1\left(TM\right)\)
\(a,x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2-2x+1-25=0\)
\(\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)
\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(2x+255=0\)
\(2x=-255\)
\(x=-\frac{255}{2}\)
a/ \(x^2-2x=24\)
<=> \(x^2-2x+1-1=24\)
<=> \(\left(x-1\right)^2=25\)
<=> \(\orbr{\begin{cases}x-1=25\\x-1=-25\end{cases}}\)<=> \(\orbr{\begin{cases}x=26\\x=-24\end{cases}}\)
b/ \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
<=> \(2x+255=0\)
<=> \(2x=-255\)
<=> \(x=-\frac{255}{2}\)
(x + 4)2 - (x + 1)(x - 1) = 16
=> x2 + 8x + 16 - x2 + 1 = 16
=> 8x + 17 = 16
=> 8x = -1
=> x = -1/8
b) (2x - 1)2 + (x - 3)2 - 5(x + 7)(x - 7) = 0
=> (4x2 - 4x + 1) + (x2 - 6x + 9) - 5(x2 - 49) = 0
=> 5x2 - 10x + 10 - 5x2 + 245 = 0
=> -10x + 255 = 0
=> 10x = 255
=> x = 25,5
Vậy x = 25,5
a) x^2+3x=0
<=> x(x+3)=0
<=> x+3=0
---> X=-3
b)x.(x-7).(x+7)=0
<=>x.(x^2-7^2)=0
<=> X^2-7^2=0
==>x= 7 và x=-7
c) x^3-9x=0
<=> x(x^2-3^2)=0
<=> x^2-3^2=0
~~> x = 3 và x=-3
d) x^2-5x-6=0
<=> x^2-5x-5-1=0
<=> (x^2-1)-(5x-5) =0
<=> x(x-1) - 5(x-1)=0
<=> (x-1)(x-5)=0
~~> x-1 = 0 ~> x=1
~~> x-5=0 ~~> x=5
Vậy x=1 và x=5
mk sửa lại đề x.y=11
ta có:
\(x+y=7\)
\(\Rightarrow\left(x+y\right)^2=49\)
\(\Rightarrow x^2+2xy+y^2=49\)
\(\Rightarrow x^2+22+y^2=49\)\(\Rightarrow x^2+y^2=27\)
x+7-x=7
7=7
x vô nghiệm
\(\Leftrightarrow\left|x+7\right|=x+7\)
\(\Leftrightarrow x+7\ge0\)
hay \(x\ge-7\)