Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x_1)2+(x+3)2_5(x+7)(x_7)=0
=>4x2-4x+1+x2+6x+9-5x2+245=0
=>(4x2+x2-5x2)+(-4x+6x)+(9+245)=0
=>2x+255=0
=>2x=-255
=>x=-255/2
P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?
1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)
=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)
=> \(4x^2-28x+49-4x+12=5\)
=> \(4x^2-32x+61=5\)
=> \(4x^2-32x+61-5=0\)
=> \(4x^2-32x+56=0\)
=> \(4\left(x^2-8x+14\right)=0\)
=> \(x^2-8x+14=0\)
=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)
4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)
=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)
=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)
=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)
=> 7 = 7(đúng)
5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)
=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1
=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1
=> 2x + 41 = 1
=> 2x = -40
=> x = -20
\(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(\left(x+2\right)-\left(x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5
=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0
=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0
=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0
=> -2x2 + 3 = 0
=> -2x2 = -3
=> x2 = 3/2
=> x = \(\pm\sqrt{\frac{3}{2}}\)
2. \(\left(x+5\right)^2-6=0\)
=> x2 + 10x + 25 - 6 = 0
=> x2 + 10x + 19 = 0
=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)
3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)
=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0
=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0
=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0
=> -2x + 27 = 0
=> -2x = -27
=> x = 27/2
4. \(\left(x-2\right)^3-x^3+6x^2=7\)
=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7
=> 12x - 8 = 7
=> 12x = 15
=> x = 5/4
5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)
=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12
=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12
=> -6x + 12 = 12
=> -6x = 0
=> x = 0
6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)
=> 48x - 5x - 2 = 0
=> 43x - 2 = 0
=> 43x = 2
=> x = 2/43
Còn bài cuối tự làm :>
Anh Sang làm cầu kì quá ;-;
1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5
<=> x3 + 8 - x3 - 2x2 = 5
<=> 8 - 2x2 = 5
<=> 2x2 = 3
<=> x2 = 3/2
<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)
<=> \(x=\pm\sqrt{\frac{3}{2}}\)
2. ( x + 5 )2 - 6 = 0
<=> ( x + 5 )2 - ( √6 )2 = 0
<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0
<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)
3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x
<=> x3 + 27 - x3 = 2x
<=> 27 = 2x
<=> x = 27/2
4. ( x - 2 )3 - x3 + 6x2 = 7
<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
<=> 12x - 8 = 7
<=> 12x = 15
<=> x = 15/12 = 5/4
5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12
<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12
<=> 3x2 - 12x + 12 + 6x - 3x2 = 12
<=> -6x + 12 = 12
<=> -6x = 0
<=> x = 0
6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0
<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0
<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0
<=> 43x - 2 = 0
<=> 43x = 2
<=> x = 2/43
7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0
<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0
<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0
<=> -39x + 4 = 0
<=> -39x = -4
<=> x = 4/39
(x-1)2+(x+3)2-5(x+7)(x-7)=0
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-3x^2+4x+255=0\)
\(\Leftrightarrow-3\left(x^2-\frac{4}{3}x\right)+255=0\)
\(\Leftrightarrow-3\left(x^2-2.x.\frac{2}{3}+\frac{4}{9}\right)+3.\frac{4}{9}+255=0\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2+\frac{769}{3}\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2=-\frac{769}{3}\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2=\frac{769}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{769}{9}}\\x-\frac{2}{3}=-\sqrt{\frac{769}{9}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{\sqrt{769}+2}{3}\\x=-\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{2-\sqrt{769}}{3}\end{cases}}\)
Vậy \(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{769}+2}{3}\\x=\frac{2-\sqrt{769}}{3}\end{cases}}\)