K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

 (2x_1)2+(x+3)2_5(x+7)(x_7)=0

=>4x2-4x+1+x2+6x+9-5x2+245=0

=>(4x2+x2-5x2)+(-4x+6x)+(9+245)=0

=>2x+255=0

=>2x=-255

=>x=-255/2

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

1 tháng 7 2018

a/ \(25x^2-9=0\)

<=> \(\left(5x-3\right)\left(5x+3\right)=0\)

<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

<=> \(x^2+8x+16-x^2+8x-9=16\)

<=> \(16x+7=16\)

<=> \(16x=9\)

<=> \(x=\frac{9}{16}\)

1 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)

Vậy S = {3/5 ; -3/5}

b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)

\(\Leftrightarrow9=0\left(vl\right)\)

Vậy S = \(\varnothing\)

23 tháng 10 2016

-_- bài này hôm qua lm rùi

16 tháng 8 2020

a)

pt <=>     \(x^2+4x+4+x^2-6x+9=2x^2+14x\)

<=>     \(2x^2-2x+13=2x^2+14x\)

<=>     \(16x=13\)

<=>     \(x=\frac{13}{16}\)

b)

pt <=>     \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)

<=>   \(2x^3+6x=2x^3\)

<=>   \(6x=0\)

<=>   \(x=0\)

c)

pt <=>    \(\left(x^3-3x^2+3x-1\right)-125=0\)

<=>   \(\left(x-1\right)^3=125\)

<=>   \(x-1=5\)

<=>   \(x=6\)

d)

pt <=>   \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

<=>   \(\left(x-1\right)^2+\left(y+2\right)^2=0\)     (1)

CÓ:   \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=>   \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\)       (2)

TỪ (1) VÀ (2) =>    DÁU "=" XẢY RA <=>   \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=>     \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e)

pt <=>   \(2x^2+8x+8+y^2-2y+1=0\)

<=>   \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)

TA LUÔN CÓ:   \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\) 

<=>     \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

16 tháng 8 2020

a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )

<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x

<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9

<=> -16x = -13

<=> x = 13/16

b) ( x + 1 )3 + ( x - 1 )3 = 2x3

<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3

<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1

<=> 6x = 0

<=> x = 0

c) x3 - 3x2 + 3x - 126 = 0

<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0

<=> ( x - 1 )3 = 125

<=> ( x - 1 )3 = 53

<=> x - 1 = 5

<=> x = 6

d) x2 + y2 - 2x + 4y + 5 = 0

<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0

<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e) 2x2 + 8x + y2 - 2y + 9 = 0

<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0

<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)

\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

21 tháng 9 2020

P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?

1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)

=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)

=> \(4x^2-28x+49-4x+12=5\)

=> \(4x^2-32x+61=5\)

=> \(4x^2-32x+61-5=0\)

=> \(4x^2-32x+56=0\)

=> \(4\left(x^2-8x+14\right)=0\)

=> \(x^2-8x+14=0\)

=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)

4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)

=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)

=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)

=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)

=> 7 = 7(đúng)

5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)

=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1

=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1

=> 2x + 41 = 1

=> 2x = -40

=> x = -20