Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
/x -9/ +4= 0
/x-9/ = 0+4
/x+9/= 4
th1: x+9= 4
x= 4-9
x= -5
th2: /x-9/= -4
x= (-4) +9
x= 5
Vậy x= 5; -5
Có: /x-9/+4=0
=> /x-9/=0-4
=> /x-9/= -4.
Mà: + Giá trị tuyệt đối của 1 số luôn luôn lớn hơn hoặc bằng 0
+ /x-9/ < 0
=> Không có giá trị của x.
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
dễ thấy vế trái luôn>0 nên 6x>0=> x>0
x>0, bỏ dấu trị tuyệt đối ra ta đc 4x+10=6x
x=5
chúc bạn học giỏi, ăn Tết đc ngon, hehe -_-
HYC-30/1/2022
Answer:
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=6x\)
Có \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+2+x+3+x+4=6x\)
\(\Rightarrow4x+10=6x\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)