Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{15}{95}+x-\frac{17}{93}+x-\frac{23}{87}+x-\frac{37}{73}=4\)
\(\Rightarrow x+x+x+x-\frac{15}{95}-\frac{17}{93}-\frac{23}{87}-\frac{37}{73}=4\)
\(\Rightarrow4x-\)\(\left(\frac{15}{95}+\frac{17}{93}+\frac{23}{87}+\frac{37}{73}\right)=4\)
Tự làm nốt nhé bạn !
~Study well~
#ARMY + BLINK#
\(\frac{x-11}{95}+\frac{x-13}{93}=\frac{x-15}{91}+\frac{x-17}{89}\) => \(\frac{x-11}{95}-1+\frac{x-13}{93}-1=\frac{x-15}{91}-1+\frac{x-17}{89}-1\)
=>\(\frac{x-106}{95}+\frac{x-106}{93}=\frac{x-106}{91}+\frac{x-106}{89}\)
=>\(\left(\frac{1}{95}+\frac{1}{93}\right)\left(x-106\right)-\left(\frac{1}{91}+\frac{1}{89}\right)\left(x-106\right)=0\)
<=>\(\left[\left(\frac{1}{95}+\frac{1}{93}\right)-\left(\frac{1}{91}+\frac{1}{89}\right)\right]\left(x-106\right)=0\).Vì\(\frac{1}{95}< \frac{1}{91};\frac{1}{93}< \frac{1}{89}\) nên\(\frac{1}{95}+\frac{1}{93}< \frac{1}{91}+\frac{1}{89}\)
=>\(\left(\frac{1}{95}+\frac{1}{93}\right)-\left(\frac{1}{91}+\frac{1}{89}\right)< 0\) hay khác 0.Vậy x - 106 = 0, tìm được x = 106
b) \(\frac{x-11}{89}+\frac{x-13}{87}+\frac{x-15}{85}+\frac{x-17}{83}=4\)
\(=>\left(\frac{x-11}{89}-1\right)+\left(\frac{x-13}{87}-1\right)+\left(\frac{x-15}{85}-1\right)+\left(\frac{x-17}{83}-1\right)=0\)
\(=>\frac{x-100}{89}+\frac{x-100}{87}+\frac{x-100}{85}+\frac{x-100}{83}=0\)
\(=>\left(x-100\right)\left(\frac{1}{89}+\frac{1}{87}+\frac{1}{85}+\frac{1}{83}\right)=0\)
=> x-100 =0 => x=100
Vậy nghiệm là 100
Ta có :
\(\frac{x-3}{97}+\frac{x-27}{73}+\frac{x-67}{33}+\frac{x-73}{27}=4\)
\(\Leftrightarrow\left(\frac{x-3}{97}-1\right)+\left(\frac{x-27}{73}-1\right)+\left(\frac{x-67}{33}-1\right)+\left(\frac{x-73}{27}-1\right)=0\)
\(\Leftrightarrow\frac{x-100}{97}+\frac{x-100}{73}+\frac{x-100}{33}+\frac{x-100}{27}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}>0\) Nên \(x-100=0\)
\(\Leftrightarrow x=100\)
Vậy \(x=100\)
\(\Leftrightarrow\frac{x-3}{87}+\frac{x-27}{79}+\frac{x-67}{33}+\frac{x-73}{27}-4=0\)
\(\Leftrightarrow\left(\frac{x-3}{97}-1\right)+\left(\frac{x-27}{73}-1\right)+\left(\frac{x-67}{33}-1\right)+\left(\frac{x-73}{27}-1\right)=0\)
\(\Leftrightarrow\left(\frac{x-3-97}{97}\right)+\left(\frac{x-27-73}{73}\right)+\left(\frac{x-67-33}{33}\right)+\left(\frac{x-73-27}{27}\right)=0\)
\(\Leftrightarrow\frac{x-100}{97}+\frac{x-100}{73}+\frac{x-100}{33}+\frac{x-100}{27}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\ne0\)
\(\Rightarrow x-100=0\Leftrightarrow x=100\)
a, 315+(125-x)=435
<=> 125 - x = 435 - 315
<=> 125 - x = 120
<=> x = 5
b, 6x-5=613
<=> 6x = 613 + 5
<=> 6x = 618
<=> x = 103
c, 128-3(x+4)=23
<=> 3(x +4 ) = 105
<=> x + 4 = 35
<=> x = 31
e, -x +8=17
<=> x = -9
a, 315+(125-x)=435
125-x=435-315=120
x=125-120=5
=>x=5
b,6x-5=613
6x=613+5=618
x=618:6=103
c, 128-3(x+4)=23
3(x+4)=128-23=105
x-4=105:3=35
x=35+4=39
Ý D NHẦM ĐẦU BÀI BẠN ƠI.
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Rightarrow x+\frac{3}{4}=\pm\frac{1}{3}\)
\(\cdot x+\frac{3}{4}=\frac{1}{3}\)
\(x=-\frac{5}{12}\)
\(\cdot x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{13}{12}\)
|x(x-4)|=x
=> x(x-4)=x hoặc x(x-4)=-x
=> x2-4x-x=0 hoặc x2-4x+x=0
=> x2-5x=0 hoặc x2-3x=0
=> x(x-5)=0 hoặc x(x-3)=0
=> x=0 hay x-5=0 hoặc x=0 hay x-3=0
=> x=0 hay x=0+5 hoặc x=0 hayc x=0+3
=> x=0 hay x=5 hoặc x=0 hay x=3
=> x \(\in\){0;3;5}
\x(x-4)\=x<=>x-4=1 hoac=-1
xet :x-4=1=> x=-3(vli)
:x-4=-1=>x=3
=> x=3
Ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\) và \(y-x=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
\(\hept{\begin{cases}\frac{x}{4}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.4=2\\\frac{y}{8}=\frac{1}{2}\Rightarrow y=\frac{1}{2}.8=4\\\frac{z}{15}=\frac{1}{2}\Rightarrow z=\frac{1}{2}.15=7,5\end{cases}}\)
Vậy \(x=2;y=4;z=7,5\)
link này nek bn
https://olm.vn/hoi-dap/detail/221755736772.html
\(\frac{x-15}{95}+\frac{x-17}{93}+\frac{x-23}{87}+\frac{x-37}{73}=4\)
\(\Leftrightarrow\frac{x-15}{95}+\frac{x-17}{93}+\frac{x-23}{87}+\frac{x-37}{73}-4=0\)
\(\Leftrightarrow\left(\frac{x-15}{95}-1\right)+\left(\frac{x-17}{93}-1\right)+\left(\frac{x-23}{87}-1\right)+\left(\frac{x-37}{73}-1\right)=0\)
\(\Leftrightarrow\frac{x-15-95}{95}+\frac{x-17-93}{93}+\frac{x-23-87}{87}+\frac{x-37-73}{73}=0\)
\(\Leftrightarrow\frac{x-110}{95}+\frac{x-110}{93}+\frac{x-110}{87}+\frac{x-110}{73}=0\)
\(\Leftrightarrow\left(x-110\right)\left(\frac{1}{95}+\frac{1}{93}+\frac{1}{87}+\frac{1}{73}\right)=0\)
\(\Leftrightarrow x-110=0\)
\(\Leftrightarrow x=110\)