Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )
\(\sqrt{x^2-25}+\sqrt{x^2+10x+25}=0.\)
\(\Rightarrow\sqrt{x^2-5^2}+\sqrt{x^2+2.5.x+5^2}=0\)
\(\Rightarrow\sqrt{\left(x-5\right).\left(x+5\right)}+\sqrt{\left(x+5\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x+5\right).\left(x-5+1\right)}=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-5+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\x-4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\x=4\end{cases}}\)
Vậy \(x=\hept{\begin{cases}-5\\4\end{cases}}\)
a, \(\sqrt{4x^2+20x+25}\) + \(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
⇔ 4x2 + 20x + 25 + \(2\sqrt{\left(4x^2+20x+25\right)\left(x^2-8x+16\right)}\) = x2 + 18x + 81
⇔ 4x2 + 20x + 25 - x2 - 18x - 81 + \(2\sqrt{\left(2x+5\right)^2.\left(x-4\right)^2}\) = 0
⇔ 3x2 + 2x - 56 + 2.(2x + 5) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + (4x + 10) . (x - 4) = 0
⇔ 3x2 + 2x - 56 + 4x2 - 16x + 10x - 40 = 0
⇔ 7x2 - 4x - 96 = 0
x1 = 4 ( nhận )
x2 = \(\frac{-24}{7}\) ( nhận )
Vậy: S = {4; \(\frac{-24}{7}\)}
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
\(A=\frac{\sqrt{x^2-10x+25}}{x-5}=\frac{\sqrt{\left(x-5\right)^2}}{x-5}\left(ĐK:x\ne5\right)\)
\(A=\frac{\left|x-5\right|}{x-5}\Rightarrow A=\hept{\begin{cases}\frac{x-5}{x-5}=1\\\frac{5-x}{x-5}=-1\end{cases}}\)
\(B=\frac{\sqrt{x=7+6\sqrt{x-2}}}{3+x\sqrt{2}}\)
\(B=\frac{\sqrt{x-2+6\sqrt{x-2}+9}}{3+\sqrt{x-2}}\)
\(B=\frac{\sqrt{\left(\sqrt{x-2+3}^2\right)}}{3+\sqrt{x-2}}=\frac{\left|\sqrt{x-2}+3\right|}{3+\sqrt{x-2}}=1\)
ĐKXĐ : \(x\ge-3\)
\(\sqrt{x^2-10x+25}=x+3\)
\(\Leftrightarrow\left|x-5\right|=x+3\)
TH1. Nếu x < 5 , pt trở thành 5-x = x+3 <=> x = 1 (thỏa mãn)
TH2. Nếu \(x\ge5\)pt trở thành x - 5 = x + 3 => -5 = 3 (vô lí)
Vậy x = 1