Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là gì vậy bạn ??? Tính hay tìm x ?
\(\frac{0,\left(3\right)+0,\left(384615\right)+\frac{3}{13}x}{0,0\left(3\right)+13}\)
\(=\frac{\frac{1}{3}+\frac{5}{13}+\frac{3}{13}x}{\frac{1}{30}+13}=\frac{\frac{1}{3}+\frac{5+3x}{13}}{\frac{391}{30}}=\frac{\frac{13+3\left(5+3x\right)}{39}}{\frac{391}{30}}\)
\(=\frac{\frac{13+15+9x}{39}}{\frac{391}{90}}=\frac{\frac{28+9x}{39}}{\frac{391}{90}}=\frac{28+9x}{39}\cdot\frac{90}{391}\)
P/S : Sai đề trầm trọng
\(\dfrac{0.\left(3\right)+0.\left(384615\right)+\dfrac{3}{13}x}{0.0\left(3\right)+13}=\dfrac{50}{85}\)
\(\Leftrightarrow\dfrac{\dfrac{28}{39}+\dfrac{3}{13}x}{\dfrac{391}{30}}=\dfrac{10}{17}\)
\(\Leftrightarrow x\cdot\dfrac{3}{13}+\dfrac{28}{39}=\dfrac{23}{3}\)
\(\Leftrightarrow x\cdot\dfrac{3}{13}=\dfrac{271}{39}\)
\(\Leftrightarrow x=\dfrac{271}{9}\)
\(\Leftrightarrow\dfrac{\dfrac{3}{10}+\dfrac{5}{13}+\dfrac{3}{13}x}{\dfrac{1}{30}+13}=\dfrac{50}{85}\)
\(\Leftrightarrow x\cdot\dfrac{3}{13}+\dfrac{89}{130}=\dfrac{23}{3}\)
=>3/13x=2723/390
hay x=2723/90
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)