Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x+2}+5^{x+3}=750\)
\(5^x.5^2+5^x.5^3=750\)
\(5^x.25+5^x\cdot125=750\)
\(5^x.\left(25+125\right)=750\)
\(5^x.150=750\)
\(5^x=750:150\)
\(5^x=5\)
\(5^x=5^1\)
\(\Rightarrow x=1\)
1: Tìm x
a) Ta có: \(\left(2x-1\right)^3=-27\)
\(\Leftrightarrow2x-1=-3\)
\(\Leftrightarrow2x=-3+1=-2\)
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(2x-3\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=-5\\2x-3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5+3=-2\\2x=5+3=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;4\right\}\)
c) Ta có: \(\left(x-2\right)^5=\left(x-2\right)^7\)
\(\Leftrightarrow\left(x-2\right)^5-\left(x-2\right)^7=0\)
\(\Leftrightarrow\left(x-2\right)^5\left[1-\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left[1-\left(x-2\right)\right]\cdot\left[1+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(1-x+2\right)\cdot\left(1+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(-x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^5=0\\-x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x=-3\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2;3\right\}\)
d) Ta có: \(5^{x+2}+5^{x+3}=750\)
\(\Leftrightarrow5^{x+2}\cdot1+5^{x+2}\cdot5=750\)
\(\Leftrightarrow5^{x+2}\left(1+5\right)=750\)
\(\Leftrightarrow5^{x+2}\cdot6=750\)
\(\Leftrightarrow5^{x+2}=125\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)