Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
Câu a :
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Câu b :
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)
\(\rightarrow2x+8=15\)
\(\rightarrow2x=15-8=7\)
\(\Rightarrow x=7:2=3,5\)
Do ko có t/gian nên ko kịp lm câu b
Cho phép mình làm câu b trước :v
b) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Rightarrow x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6+1=0\)
\(\Leftrightarrow-3x^2\cdot\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2\cdot\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1;x=-1\end{matrix}\right.\)
Vậy \(x_1=-1;x_2=0;x=1\)
Xử câu a nào :D
a) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Rightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow0+3x^2+26x+28=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x=-26\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
Vậy \(x_1=0;x_2=-\dfrac{26}{3}\)
Ok con tê tê
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
\(\frac{3a^3\left(x^2-1\right)^4}{3a^3\left(x^2-1\right)^3}=15\)
\(x^2-1=15\)
\(x^2=15+1\)
\(x^2=16\)
\(x^2=\left(\pm4\right)^2\)
\(x=\pm4\)
\(\frac{3x^5-4x^3}{x^3}-\frac{\left(3x+1\right)^3}{3x+1}-\frac{3x^7}{x^5}=0\)
\(\frac{x^3\left(3x^2-4\right)}{x^3}-\left(3x+1\right)^2-3x^2=0\)
\(3x^2-4-\left(3x+1\right)^2-3x^2=0\)
\(-4-\left(3x+1\right)^2=0\)
Không tìm được x thoả mãn yêu cầu vì \(-4-\left(3x+1\right)^2\le-4< 0\)
\(\frac{x^2+\frac{1}{2}x}{\frac{1}{2}x}-\frac{\left(2x+1\right)^3}{\left(2x+1\right)^2}+\frac{\left(x+1\right)^5}{\left(x+1\right)^2}=0\)
\(\frac{\frac{1}{2}x\left(2x+1\right)}{\frac{1}{2}x}-\left(2x+1\right)+\left(x+1\right)^3=0\)
\(\left(2x+1\right)-\left(2x+1\right)+\left(x+1\right)^3=0\)
\(x+1=0\)
\(x=-1\)