K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

\(5x\left(x-3\right)\left(x+3\right)-\left(2x-3\right)^2-5\left(x+2\right)^2\)

\(+34x\left(x+2\right)=1\)

\(\Leftrightarrow5x\left(x^2-9\right)-\left(4x^2-12x+9\right)-5\left(x^2+4x+4\right)\)

\(+34x^2+68x=0\)

\(\Leftrightarrow5x^3-45x-4x^2+12x-9-5x^2-20x-20\)

\(+34x^2+68x=0\)

\(\Leftrightarrow5x^3+25x^2+15x-29=0\)

Giải nghiệm ta được ba nghiệm sau: 

\(x_1\approx0,776\)

\(x_2\approx-1,96\)

\(x_3\approx-3,82\)

18 tháng 9 2016

5x(x - 3)(x + 3) - (2x - 3)2 - 5(x + 2) + 34x(x + 2) = 1

\(\Leftrightarrow-\left(2x-3\right)^2+5x\left(x-3\right)\left(x+3\right)+34x\left(x+2\right)-5\left(x+2\right)-1=0\)

\(\Leftrightarrow\left[-\left(2x-3\right)^2+5x\left(x^2-9\right)-1\right]+\left(x+2\right)\left(34x-5\right)=0\)

\(\Leftrightarrow\left(-4x^2+12x-9+5x^3-45x-1\right)+\left(x+2\right)\left(34x-5\right)=0\)

\(\Leftrightarrow\left(5x^3-4x^2-33x-10\right)+\left(x+2\right)\left(34x-5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x^2-14x-5\right)+\left(x+2\right)\left(34x-5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x^2-14x-5+34x-5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x^2+20x-10\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+4x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x^2+4x-2=0\left(1\right)\end{array}\right.\)

\(\left(1\right)\Leftrightarrow x^2+4x+4-6=0\)

\(\Leftrightarrow\left(x+2\right)^2=6\)

\(\Leftrightarrow x=\pm\sqrt{6}-2\)

Vậy pt có nghiệm là \(\left[\begin{array}{nghiempt}x=-2\\x=\pm\sqrt{6}-2\end{array}\right.\)

 

 

 

18 tháng 9 2016

Để đẩu nữa mk về giải cho hihi

25 tháng 6 2018

a/ \(\left(x+2\right)^2-9=0\)

<=> \(\left(x+2-3\right)\left(x+2+3\right)=0\)

<=> \(\left(x-1\right)\left(x+5\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

b/ \(x^2-2x+1=25\)

<=> \(\left(x-1\right)^2=25\)

<=> \(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)

<=> \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

25 tháng 6 2018

a) (x+2)2=0

 ==> x+2=0

 ==> x=0-2

==> x=-2

28 tháng 9 2018

\(2x\left(x-3\right)-x+3=0\)

<=>  \(2x\left(x-3\right)-\left(x-3\right)=0\)

<=>  \(\left(x-3\right)\left(2x-1\right)=0\)

<=>  \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

29 tháng 8 2017

2.

a) \(x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)

\(\Rightarrow x^3+x^2+x-x^3-x^2-x+5\)

\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)

\(=5\)( vì kết quả bằng 5 nên đa thức không phụ thuộc vào biến )

b) \(x.\left(2x+1\right)-x^2.\left(x+2\right)+x^3-x+3\)

\(\Rightarrow2x^2+x-x^3-2x^2+x^3-x+3\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)

\(=3\)( vì kết quả bằng 3 nên đa thức không phụ thuộc vào biến )

c) \(4.\left(6+x\right)+x^2.\left(2+3x\right)-x.\left(5x+4\right)+3x^2.\left(1-x\right)\)

\(\Rightarrow24+4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)

\(\Rightarrow24+\left(4x-4x\right)+\left(2x^2-5x^2+3x^2\right)+\left(3x^3-3x^3\right)\)

\(=24\)( vì kết quả bằng 24 nên đa thức không phụ thuộc vào biến )

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

14 tháng 2 2020

Câu 1 :

a, Ta có : \(x^2-10x=-25\)

=> \(x^2-10x+25=0\)

=> \(\left(x-5\right)^2=0\)

=> \(x-5=0\)

=> \(x=5\)

Vậy phương trình có nghiệm là x = 5 .

b, Ta có : \(5x\left(x-1\right)=x-1\)

=> \(5x\left(x-1\right)-x+1=0\)

=> \(5x\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(5x-1\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)

c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)

=> \(2\left(x+5\right)-x\left(x+5\right)=0\)

=> \(\left(2-x\right)\left(x+5\right)=0\)

=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 2, x = -5 .

d, Ta có : \(x^2-2x-3=0\)

=> \(x^2-3x+x-3=0\)

=> \(x\left(x+1\right)-3\left(x+1\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 3, x = -1 .

e, Ta có : \(2x^2+5x-3=0\)

=> \(2x^2+6x-x-3=0\)

=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)

=> \(\left(x+3\right)\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)

14 tháng 2 2020

\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)

Vậy nghiệm của phương trình trên là \(5\)

\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)