K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

a)

\(x^2-2x=24\)

\(\Leftrightarrow x^2-6x+4x-24=0\)

\(\Leftrightarrow x(x-6)+4(x-6)=0\Leftrightarrow (x+4)(x-6)=0\)

\(\Rightarrow \left[\begin{matrix} x+4=0\\ x-6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-4\\ x=6\end{matrix}\right.\)

b)

\(x^3-7x+6=0\Leftrightarrow (x^3-x)-(6x-6)=0\)

\(\Leftrightarrow x(x^2-1)-6(x-1)=0\)

\(\Leftrightarrow x(x-1)(x+1)-6(x-1)=0\)

\(\Leftrightarrow (x-1)(x^2+x-6)=0\)

\(\Leftrightarrow (x-1)(x^2-2x+3x-6)=0\)

\(\Leftrightarrow (x-1)[x(x-2)+3(x-2)]=0\)

\(\Leftrightarrow (x-1)(x-2)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=2\\ x=-3\end{matrix}\right.\)

c) Xem lại đề.

d) Đặt \(x^2+x+4=a\) thì pt trở thành:

\(a^2+8ax+16x^2=0\)

\(\Leftrightarrow a^2+2.a.4x+(4x)^2=0\)

\(\Leftrightarrow (a+4x)^2=0\Rightarrow a+4x=0\)

\(\Rightarrow x^2+x+4+4x=0\)

\(\Rightarrow x(x+1)+4(x+1)=0\Leftrightarrow (x+1)(x+4)=0\)

\(\Rightarrow \left[\begin{matrix} x+4=0\rightarrow x=-4\\ x+1=0\rightarrow x=-1\end{matrix}\right.\)

27 tháng 9 2018

Sửa đề: c) (x2+x)2+4(x2+x)=12

Ukm

It's very hard

l can't do it 

Sorry!

 
27 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt

b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)

\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)

Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)

\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)

Từ đó tính đc x

d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)

\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+5=a\), khi đó pt có dạng:

\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

24 tháng 7 2016

chắc bn nảy hỏi lun cả bài tâp về nhà quá, làm km 1 câu

a) = a+a+a + a +a +1 -a -a -a = a(a+a+1) +(a+a+1) - a(a+a+1)= (a+a+1)(a-a+1)

tự bn thêm mũ 4;3;2 vào được là bn làm dc cac câu sau

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

5 tháng 11 2018

\(a,9x^2-49=0\)

\(9x^2=49\)

\(x^2=\frac{49}{9}=\frac{7^2}{3^2}=\frac{\left(-7\right)^2}{\left(-3\right)^2}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)

vậy ...

\(c,x^3-16x=0\)

\(x.\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4,x=-4\end{cases}}\)

vậy ...

23 tháng 7 2017

\(a,x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(b,x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow\left(x-2\right)x\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=0\\x^2+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\\left[{}\begin{matrix}x^2=10\\x^2=-10\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\sqrt{10}\\x=-\sqrt{10}\end{matrix}\right.\)\(c,\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow4x^2-4x+1=x^2+6x+9\)

\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)

\(\Leftrightarrow3x^2-10x-8=0\)

\(\Leftrightarrow3x^2-12x+2x-8=0\)

\(\Leftrightarrow3x\left(x-4\right)+2\left(x-4\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Phần d tương tự

23 tháng 7 2017

Câu a :

\(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-4^2\right)=0\)

\(\Leftrightarrow x\left[\left(x+4\right)\left(x-4\right)\right]=0\)

\(\Rightarrow\) \(x=0\)

\(\Rightarrow\) \(x+4=0\Rightarrow x=-4\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

Câu b :

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)\) \(=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Rightarrow x=0\)

\(\left(x-2\right)=0\Rightarrow x=2\)

\(x^2+10=0\) \(\Rightarrow\) x ( loại )

17 tháng 8 2015

a) x^4 - 2x^2 + 1 = 0 

=> ( x^2 - 1 )^2 = 0 

=> x^2 - 1 = 0 

=> x^2 = 1 

=> x = 1 hoặc x = -1 

4 tháng 12 2016

a) x4-2x2+1=0

(thang Tran giải rồi nhé)

b) x4-2x2-8=0

<=> x^4 - 2x^2 +1 -9 =0 

<=>  (x^2 -1)^2 -9 =0

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=-3\\x^2-1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-2\left(VN\right)\\x=+_-\sqrt{2}\end{cases}}}\)

Vậy x=+- căn 2

c) x4-4x2-60=0

\(\Leftrightarrow x^4-4x^2+4-64=0\)

\(\Leftrightarrow\left(x^2-2\right)-64=0\)

\(\Leftrightarrow\left(x^2+62\right)\left(x^2-66\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+62=0\\x^2-66=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-62\left(VN\right)\\x^2=+_-\sqrt{66}\end{cases}}}\)

Vậy x=+- căn 66

d) x6-16x2+64=0

14 tháng 8 2016

a) \(\left(y-1\right)^2=9\)

\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)

\(\Rightarrow x-1=3\Rightarrow x=4\)

\(\Rightarrow x-1=-3\Rightarrow x=-2\)

Vậy: \(x=4\) hoặc \(-2\)

14 tháng 8 2016

\(\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4\right)^2=25\)

\(\Rightarrow\left(x-4\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow x-4=5\Rightarrow x=9\)

\(\Rightarrow x-4=-5\Rightarrow x=-1\)

Vậy: \(x=9\) hoặc \(-1\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

Bài 2: 

a: =>(4x-1)2=0

=>4x-1=0

hay x=1/4

b: =>(x+4)(x-2)=0

=>x=-4 hoặc x=2

c: =>x2+2x+1+y2+2y+1=0

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)

=>x=-1và y=-1