K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

\(\left|x^2+\left|x-1\right|\right|=x^2+2\)

\(\Leftrightarrow x^2+\left|x-1\right|=x^2+2\)

\(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x-1=-2;x=-1\\x-1=2;x=3\end{matrix}\right.\)

2 tháng 4 2018

Ta có:

\(\left\{{}\begin{matrix}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{matrix}\right.\)

\(\left|x+2\right|+\left|x-1\right|=3-\left(y+2\right)^2\) khi: \(\left\{{}\begin{matrix}-2\le x\le1\\y=-2\end{matrix}\right.\)

30 tháng 7 2017

\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)=>(x−1)2+(y−2)2=0

Dấu "=" xảy ra khi (x−1)2=(y−2)2=0

(x-1)2=0=>x-1=0=>x=1
(y-2)2=0=>y-2=0=>y=2

Vậy x=1 và y=2

\(D=\dfrac{9x^8y^6\cdot\dfrac{1}{6}x^2y+\left(-16\right)}{15x^2y^2\cdot0.4\cdot ax^2y^2z^2}=\dfrac{\dfrac{3}{2}x^{10}y^7-16}{6ax^4y^4z^2}\)

19 tháng 4 2017

1234567890

9876543210

k tui và kb nhé

tạm biệt các bạn

19 tháng 4 2017

a) x = 2 hoặc x = -2

b) x 1 hoặc x = -1

- Ủng hộ -

25 tháng 8 2016

a)\(\left|x+\frac{1}{5}\right|-4=-2\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)

\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)

Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)

Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)

25 tháng 8 2016

phần a dấu + fai là dấu =

19 tháng 4 2017

thiếu đề . tìm nghiệm à

a) Ta có: \(x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-1\right\}\)

b) Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[\left(1-x+1\right)\left(1+x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left(2-x\right)\cdot x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;1;2\right\}\)

14 tháng 9 2019

\(\left|x-3\right|+\left|x+2\right|=7\)

-TH: \(x< -2\) thì ta được phương trình :

\(3-x+-x-2=7\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\left(c\right)\)

-TH: \(-2\le x< 3\) thì ta được phương trình:

\(3-x+x+2=7\)

\(\Leftrightarrow5=7\)(vô lí nên loại)

-TH: \(x\ge3\) thì ta được phương trình:

\(x-3+x+2=7\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(c\right)\)

Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)

14 tháng 9 2019

3a)Ta xét:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow0< x< 2\)

-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(x>3\) thì \(x>0\), \(x-2>0\)\(x-3>0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)

\(\Rightarrow x>3\)

Vậy nghiệm của phương trình là 0<x<2 và x>3

b)Dựa vào câu a haha ta có:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow x< 0\)

-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)

\(\Rightarrow2< x< 3\)

Vậy nghiệm của phương trình là x<0 và 2<x<3

Không biết có đúng không nữa hiu