\(x^2+x=0\)

b)\(\left(x-1\right)^{x+2}=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-1\right\}\)

b) Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[\left(1-x+1\right)\left(1+x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left(2-x\right)\cdot x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;1;2\right\}\)

1 tháng 12 2019

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ             

Đợi đến 9 giờ nha !

1 tháng 12 2019

                                                                              Bài giải

b, \(x-5+\left|x-3\right|=4\)

\(\left|x-3\right|=4-x+5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)

c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)

\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)

\(\)\(\Rightarrow\text{ }x=-7\)

d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)

\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

2 tháng 8 2017

\(1.\sqrt{x-1}=2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

\(2.\sqrt{3-x}=1\)

\(\Rightarrow3-x=1\)

\(\Rightarrow x=2\)

\(3.\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\x^2=1\end{matrix}\right.\)

\(\Rightarrow x=1\)

\(4.\left|2x-3\right|-\left|x-1\right|=0\)

\(\Rightarrow\left|2x-3\right|=\left|x-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=x-1\\2x-3=-x+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-x=3-1\\2x+x=3+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right..\)

29 tháng 9 2016

a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

Để dấu "=" xảy ra thì x = 0 , y = 1/10

b/ Tương tự.

17 tháng 12 2017

a, <=>x.(x+1) = 0

<=> x=0 hoặc x+1 = 0 <=> x=0 hoặc x=-1

b, <=> (x-1)^x+4-(x-1)^x+2 = 0

<=> (x-1)^x+2.[(x-1)^2-1] = 0

<=> x-1 = 0 hoặc (x-1)^2-1 = 0

<=> x=1 hoặc x= 2 hoặc x=0

c, <=> x-3= 0 hoặc 2x-4=0

<=> x=3 hoặc x=2

k mk nha

25 tháng 7 2017

a, \(\Leftrightarrow x^2+2x+1+\left|x+10\right|-x^2-12=0\)

\(\Leftrightarrow\left|x+10\right|+2x-11=0\)

ta có ; | x+10| = x+10 khi x+10\(\ge\)0 hay x \(\ge\)-10

|x+10| = -x-10 khi x+10<0 hay x<-10

vs x\(\ge\)-10  ta có:  x+10+2x-11=0 \(\Leftrightarrow\)3x=1 \(\Leftrightarrow\)x= \(\frac{1}{3}\)( thỏa mãn )

vs x< -10 ta có (tự thay vào r tính típ)

vậy x=...............

b, lm tg tự

25 tháng 7 2017

Dell có tl mô mk đăng, t đăng mk nỏ có đó tề !!!!

12 tháng 6 2017

a) \(\left|x+\frac{1}{5}\right|-4=-2\)
=) \(\left|x+\frac{1}{5}\right|=-2+4=2\)
=) \(x+\frac{1}{5}=2\)hoặc \(x+\frac{1}{5}=-2\)
=) \(x=2-\frac{1}{5}=\frac{9}{5}\); =) \(x=\left(-2\right)-\frac{1}{5}=\frac{-11}{5}\)
Vậy \(x=\left\{\frac{9}{5},\frac{-11}{5}\right\}\)
b)\(2x-\frac{1}{5}=\frac{6}{5}x-\frac{1}{2}\)
=) \(2x-\frac{6}{5}x=\frac{-1}{2}+\frac{1}{5}\)
=) \(x.\left(2-\frac{6}{5}\right)=\frac{-3}{10}\)
=) \(x.\frac{4}{5}=\frac{-3}{10}\)
=) \(x=\frac{-3}{10}:\frac{4}{5}\)
=) \(x=\frac{-3}{8}\)
c) \(\left(x-3\right)^{x+2}-\left(x-3\right)^{x+8}=0\)
=) \(\left(x-3\right)^{x+2}.\left(1-6\right)=0\)
=) \(\left(x-3\right)^{x+2}=0:\left(1-6\right)=0\)
Mà chỉ có \(0^x=0\)
=) \(x-3=0\)
=) \(x=0+3\)
=) \(x=3\)
 

12 tháng 6 2017

a, 

\(\left|x+\frac{1}{5}\right|-4=-2\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)

\(\Rightarrow\hept{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{5}\\x=-\frac{11}{5}\end{cases}}\)

b,

\(2x-\frac{1}{5}=\frac{6}{5}x-\frac{1}{2}\)

\(\Rightarrow2x-\frac{6}{5}x=-\frac{1}{2}+\frac{1}{5}\)

\(\Rightarrow\frac{4}{5}x=-\frac{3}{10}\Leftrightarrow x=-\frac{3}{8}\)

c,

\(\left[x-3\right]^{x+2}-\left[x-3\right]^{x+8}=0\)

=> [x-3]x + 2 = [x-3]x+8

=> x  + 2 = x + 8

=> x không tồn tại

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

6 tháng 9 2020

Dài đấy :))

a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)

\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)

\(\Leftrightarrow\left|x-1\right|+8=9\)

\(\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)

\(\Leftrightarrow\left(x-2\right)^2=36\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)

c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))

\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)

\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)

\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)

\(\Leftrightarrow\left(x-5\right)^2=36\)

\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)

d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)

\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)

\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)

\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)

Vậy ta xét hai trường hợp sau :

1. \(x\ge-\frac{3}{16}\)

(*) <=>\(7x-2=4x+\frac{3}{4}\)

\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)

\(\Leftrightarrow3x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)

2. \(x< -\frac{3}{16}\)

(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)

\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)

\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)

\(\Leftrightarrow11x=\frac{5}{4}\)

\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)

Vậy x = 11/12

e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)

\(\Leftrightarrow x+1=4040\)

\(\Leftrightarrow x=4039\)

8 tháng 9 2020

ĐKXD là gì vậy

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)