K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

<=> \(\left(2x+3\right)^2-4x^2+1=22\)

<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)

<=> \(3\left(4x+3\right)=21\)

<=> \(4x+3=7\)

<=> \(4x=4\)

<=> \(x=1\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

26 tháng 8 2019

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

26 tháng 8 2019

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8 

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

4 tháng 7 2017

a)  ( 3x - 1 ) ( 2x + 7 )  - ( x + 1 ) ( 6x + 5 ) = 16 

<=> 6x+ 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16

<=> 6x+ 21x - 2x - 7 - ( 6x+ x - 5 )        = 16 

<=> 6x2+ 21x - 2x - 7 - 6x-x + 5              = 16 

<=> 18x - 2                                             = 16 

<=>  18x                                                 = 18 

=>        x                                                 = 1

Vậy....  

26 tháng 8 2019
https://i.imgur.com/h3aQIDb.jpg
26 tháng 8 2019

a. \(3x^3-6x^2=0\Leftrightarrow3x^2\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b. \(x\left(x-4\right)-12x+48=0\)

\(\Leftrightarrow x\left(x-4\right)-12\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)

V.v.v.v

10 tháng 7 2018

\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)

\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)

\(12x^2-48-12x^2-36x-27\) \(=52\)

\(-36x-75=52\)

\(-36x=127\)

\(x=\frac{-127}{36}\)

\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)

\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)

\(4x^2+4x-1-4x^2+4+2x=5\)

\(6x+3=5\)

\(6x=2\)

\(x=3\)

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)

\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)

\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)

\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)

\(x^3-2-x^3-3x^2+9x+27=15\)

\(-3x^2+9x+25=15\)

\(-3x^2+9x+10=0\)

\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)

\(x=\frac{9+\sqrt{201}}{6}\)

các câu còn lại tương tự

19 tháng 7 2018

A) x3-6x2+12x-8=0

<=>(x-2)3=0

<=>x-2=0

<=>x=2

B)4(x-3)-(2x-1)(2x+1)=13

<=>4(x2-6x+9)-4x2+1=13

<=>4x2-24x+36-4x2+1=13

<=>-24x+37=13

<=>24x=37-13

<=>24x=24

<=>x=1

C)25x2-6(x+1)2=0

<=>(5x-\(\sqrt{6}\left(x+1\right)\))(5x+\(\sqrt{6}\left(x+1\right)\))=0

<=>5x-\(\sqrt{6}\left(x+1\right)\)=0 hoặc 5x+\(\sqrt{6}\left(x+1\right)\))=0

<=>5x-\(\sqrt{6}x-\sqrt{6}\)=0         <=>5x+\(\sqrt{6}x+\sqrt{6}\)=0

<=>x(5-\(\sqrt{6}\))=\(\sqrt{6}\)               <=>x(5+\(\sqrt{6}\))=\(-\sqrt{6}\)

<=>x=\(\frac{\sqrt{6}}{5-\sqrt{6}}\)                           <=>x=\(\frac{-\sqrt{6}}{5+\sqrt{6}}\)

19 tháng 7 2018

Rút gọn C=(4+2A+A^2).(4-A^2).(4-2a+a^2) GIẢI GIÚP MIK ĐI

30 tháng 10 2019

a) \(2x^2+3x-8=0\)

Ta có: \(\Delta=3^2+4.2.8=73\)

pt có 2 nghiệm

\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)

d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

Đặt \(x^2+2x=t\)

\(pt\Leftrightarrow t^2-2t-3=0\)

Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)

pt trên có 2 nghiệm

\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)

\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)

\(\Rightarrow x\in\left\{-3;-1;1\right\}\)

30 tháng 10 2019

c) \(x^4+8x^3+19x^2+12x=0\)

\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)

\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)

\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)