Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x^3-6x^2=0\)
\(3x^2\left(x-2\right)=0\)
\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) \(x\left(x-4\right)-12x+48=0\)
\(x^2-4x-12x+48=0\)
\(x^2-16x+48=0\)
\(\left(x-12\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) Viết thiếu nha :v
d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)
\(2x^2-10x-x^2-2x^2-3x=16\)
\(-13x=16\)
\(x=-\frac{16}{13}\)
e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)
\(4x^2-1-x^2+2x-1=-3\)
\(3x^2-2+2x=-3\)
\(3x^2-2+2x+3=0\)
\(3x^2+1+2x=0\)
Vì \(3x^2+1+2x>0\)nên:
\(x\in\varnothing\)
A) 3x3 - 6x2 = 0
=> 3x2(x - 2) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) x(x - 4) - 12x + 48 = 0
=> x(x - 4) - 12(x - 4) = 0
=> (x - 12)(x - 4) = 0
=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)
c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8
a) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
b) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Leftrightarrow-x-21=0\)
\(\Leftrightarrow x=-21\)
Vậy ...
c) \(5x\left(12x+7\right)-3x\left(2x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-6x^2+15x+100=0\)
\(\Leftrightarrow54x^2+50x+100=0\)
\(\Leftrightarrow54\left(x^2+\frac{25}{27}x+\frac{625}{2916}\right)+\frac{290975}{2916}=0\)
\(\Leftrightarrow54\left(x+\frac{25}{54}\right)^2+\frac{290975}{2916}=0\left(ktm\right)\)
Vậy phương trình vô nghiệm.
d) \(x\left(x-1\right)-x^2+2x=5\)
\(\Leftrightarrow x^2-x-x^2+2x-5=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy ...
e) \(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
\(\Leftrightarrow-2x^2=0\)
\(\Leftrightarrow x=0\)
Vậy ...
a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)
TH1 : x = 12 ; TH2 : x = 2
b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
TH1 : x = 8 ; TH2 : x = -3
c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)
TH1 : x = -1/2 ; TH2 : x = 7/2
d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)
Tương tự HĐT thôi :)
a) x2 - 12x - 2x + 24 = 0
<=> x( x - 12 ) - 2( x - 12 ) = 0
<=> ( x - 12 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x + 3 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
d) x3 + 6x2 + 12x + 8 = 0
<=> ( x + 2 )3 = 0
<=> x + 2 = 0
<=> x = -2
e) ( x + 2 )2 - x2 + 4 = 0
<=> x2 + 4x + 4 - x2 + 4 = 0
<=> 4x + 8 = 0
<=> 4x = -8
<=> x = -2
f) 2( x + 5 ) = x2 + 5x
<=> x2 + 5x - 2x - 10 = 0
<=> x( x + 5 ) - 2( x + 5 ) = 0
<=> ( x + 5 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0
<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0
<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0
<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0
<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0
<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0
<=> ( 3x + 13 )( 13x - 37 ) = 0
<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) x2 - 6x + 4 = 0
<=> ( x2 - 6x + 9 ) - 5 = 0
<=> ( x - 3 )2 - ( √5 )2 = 0
<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0
<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
a) \(x^2-12x-2x+24=0\)
\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) \(4x^2-12x-7=0\)
\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
d) \(x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Rightarrow x=-2\)
e) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow4x+8=0\)
\(\Rightarrow x=-2\)
f) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) \(x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2-5=0\)
\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
a. \(3x^3-6x^2=0\Leftrightarrow3x^2\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b. \(x\left(x-4\right)-12x+48=0\)
\(\Leftrightarrow x\left(x-4\right)-12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)
V.v.v.v