Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x\cdot\dfrac{3}{5}=\dfrac{-1}{7}+\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(\Leftrightarrow x=\dfrac{5}{14}:\dfrac{3}{5}=\dfrac{25}{42}\)
b: =>|3x-1|=2
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
c: \(\Leftrightarrow7\left(37-x\right)=3\left(x-13\right)\)
=>259-7x=3x-39
=>-10x=-298
hay x=29,8
d: =>x=3/4+2/3=9/12+8/12=17/12
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)
\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)
\(\frac{-3}{2}-2x=\frac{-7}{4}\)
\(2x=\frac{-7}{4}+\frac{-3}{2}\)
\(2x=\frac{-13}{4}\)
\(x=\frac{-13}{4}:2\)
\(x=\frac{-13}{4}.\frac{1}{2}\)
\(x=\frac{-13}{8}\)
Bài 1 :
a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)
b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)
\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)
\(=-1+\left(-2\right)=-1-2=-3\)
c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)
Bài 2 :
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)
=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)
b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)
=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)
=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)
c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>
|3x+7|+|2-x|=13
|3x+7|=13hoặc|2-x|=13
3x=13-7hoặcx=2-13
3x=6hoặcx=-11
x=6:3
x=2hoặcx=-11
vậy x=2hoặcx=-11
| 3x + 7 | + 3| 2 - x |
= | 3x + 7 | + | 6 - 3x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
| 3x + 7 | + | 6 - 3x | ≥ | 3x + 7 + 6 - 3x | = | 13 | = 13 ( đúng với đề bài )
Đẳng thức xảy ra khi ab ≥ 0
⇔ ( 3x + 7 )( 6 - 3x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}3x+7\ge0\\6-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ge-7\\-3x\ge-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{7}{3}\\x\le2\end{cases}}\Leftrightarrow-\frac{7}{3}\le x\le2\)
2. \(\hept{\begin{cases}3x+7\le0\\6-3x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\le-7\\-3x\le-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{7}{3}\\x\ge2\end{cases}}\)( loại )
Vậy với \(-\frac{7}{3}\le x\le2\)thì biểu thức có giá trị = 13