Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
|3x+7|+|2-x|=13
|3x+7|=13hoặc|2-x|=13
3x=13-7hoặcx=2-13
3x=6hoặcx=-11
x=6:3
x=2hoặcx=-11
vậy x=2hoặcx=-11
| 3x + 7 | + 3| 2 - x |
= | 3x + 7 | + | 6 - 3x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
| 3x + 7 | + | 6 - 3x | ≥ | 3x + 7 + 6 - 3x | = | 13 | = 13 ( đúng với đề bài )
Đẳng thức xảy ra khi ab ≥ 0
⇔ ( 3x + 7 )( 6 - 3x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}3x+7\ge0\\6-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ge-7\\-3x\ge-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{7}{3}\\x\le2\end{cases}}\Leftrightarrow-\frac{7}{3}\le x\le2\)
2. \(\hept{\begin{cases}3x+7\le0\\6-3x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\le-7\\-3x\le-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{7}{3}\\x\ge2\end{cases}}\)( loại )
Vậy với \(-\frac{7}{3}\le x\le2\)thì biểu thức có giá trị = 13
a: \(\Leftrightarrow x\cdot\dfrac{3}{5}=\dfrac{-1}{7}+\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(\Leftrightarrow x=\dfrac{5}{14}:\dfrac{3}{5}=\dfrac{25}{42}\)
b: =>|3x-1|=2
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
c: \(\Leftrightarrow7\left(37-x\right)=3\left(x-13\right)\)
=>259-7x=3x-39
=>-10x=-298
hay x=29,8
d: =>x=3/4+2/3=9/12+8/12=17/12
Bài 1 :
a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)
b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)
\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)
\(=-1+\left(-2\right)=-1-2=-3\)
c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)
Bài 2 :
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)
=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)
b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)
=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)
=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)
c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>
\(\left|5x+13\right|=2x-7\)
khi \(x>\frac{7}{2}\), biểu thức có dạng:
\(\orbr{\begin{cases}5x+13=2x-7\\5x+13=7-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=-20\\7x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{20}{3}\\x=-\frac{6}{7}\end{cases}}}\)
\(\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}.x\right)\)
\(\frac{x}{2}-\frac{3x-13}{5}=-\frac{14+7x}{10}\)
\(\frac{5x}{10}-\frac{2\left(3x-13\right)}{10}=-\frac{14+7x}{10}\)
\(\frac{5x-6x-26}{10}=\frac{-14-7x}{10}\)
\(\Rightarrow10.\left(5x-6x-26\right)=\left(-14-7x\right).10\)
\(\Rightarrow50x-60x-260=-140-70x\)
\(\Rightarrow-10x-260=-140-70x\)
\(\Rightarrow-10x+70x=-140+260\)
\(\Rightarrow60x=120\)
\(\Rightarrow x=2\)
\(\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
\(\Leftrightarrow\frac{x}{2}-\frac{3x}{5}+\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)
\(\Leftrightarrow\frac{x}{2}-\frac{3x}{5}=-\frac{7}{10}x-4\)
\(\Leftrightarrow-\frac{7}{10}x-\frac{x}{2}+\frac{3x}{5}=4\)
\(\Leftrightarrow x\left(-\frac{7}{10}-\frac{1}{2}+\frac{3}{5}\right)=4\)
\(\Leftrightarrow x\left(-\frac{3}{5}\right)=4\)
\(\Leftrightarrow x=-\frac{20}{3}\)
a) (3x-24) = 2.74:73
=> 3x-24 = 2.7
=> 3x-16 = 14
=> 3x = 14+16
=> 3x = 30
=> x = 30:3
Vậy x = 10
b) x - [42 + (-28)] = -8
=> x - 14 = -8
=> x = -8 + 14
Vậy x = 6
c) l x-3 l = l 5 l + l -7 l
=> l x-3 l = 5+7
=> l x-3 l = 12
=> x-3 = 12 hay x-3 = -12
=> x = 12+3 hay x = -12+3
Vậy x = 15 hay x = -9
d) mình k biết
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
53 x 3 - 8
53 x 3 - 8
Hok tốt!