Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
để thương của biểu thức đạt giá trị nhỏ nhất thì: x2-4x+5 nhỏ nhất
⇔ \(x^2-4x+5=x^2-2.2x+4+1\)
=(x-2)2+1 ≥1
Vậy để thương của biểu thức đạt giá trị nhỏ nhất thì x-2=0 ⇔ x=2
2x4-9x3+14x2-9x+2=0
<=> 2x4-2x3-7x3+7x2+7x2-7x-2x+2=0
<=> 2x3(x-1)-7x2(x-1)+7x(x-1)-2(x-1)=0
<=> (x-1)(2x3-7x2+7x-2)=0
<=> (x-1)[2x3-2x2-5x2+5x+2x-2]=0
<=> (x-1)[2x2(x-1)-5x(x-1)+2(x-1)]=0
<=> (x-1)2(2x2-5x+2)=0
<=> (x-1)2(2x2-4x-x+2)=0
<=> (x-1)2[(2x(x-2)-(x-2)]=0
<=> (x-1)2(x-2)(2x-1)=0
=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\x-2=0\\2x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x_1=1\\x_2=2\\x_3=\frac{1}{2}\end{cases}}\)
Lời giải:
$2x^4-9x^3+14x^2-9x+2=0$
$\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0$
$\Leftrightarrow 2x^3(x-1)-7x^2(x-1)+7x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(2x^3-7x^2+7x-2)=0$
$\Leftrightarrow (x-1)[2(x^3-1)-7x(x-1)]=0$
$\Leftrightarrow (x-1)(x-1)(2x^2+2x+2-7x)=0$
$\Leftrightarrow (x-1)^2(2x^2-5x+2)=0$
$\Leftrightarrow (x-1)^2(2x^2-4x-x+2)=0$
$\Leftrightarrow (x-1)^2[2x(x-2)-(x-2)]=0$
$\Leftrightarrow (x-1)^2(2x-1)(x-2)=0$
\(\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{1}{2}\\ x=2\end{matrix}\right.\)
2x^4-9x^3+14x^2-9x+2=0
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1
nên phân tích đc nhân tử là (x-1)
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0
<=> x=1 và 2x^3-7x^2+7x-2=0
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1)
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0
<=> x=1 và 2x^2-5x+2=0
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0
<=> (x-5/4)^2 - 9/16 = 0
<=> (x-5/4)^2 - (3/4)^2 = 0
a) \(x^3-2x=0\)
\(\Rightarrow x.\left(x^2-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{2}\end{cases}}\)
b) \(x^3+2x=0\)
\(\Rightarrow x.\left(x^2+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+2=0\end{cases}}\)
Mà x2 và 2 là một số chẵn nên tổng của chúng khác 0. Vậy x = 0.
\(2x^3+9x^2+14x+5=0\)
\(\Leftrightarrow2x^3+x^2+8x^2+4x+10x+5=0\)
\(\Leftrightarrow x^2\left(2x+1\right)+4x\left(2x+1\right)+5\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2+4x+5\right)\)=0
\(\Leftrightarrow...\)
Chắc tới đây được rồi :)