Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
=> \(x^2-10x+18-x^2=12\)
=> -10x + 18 = 12
=> -10x = -6
=> -5x = -3
=> x = 3/5
b) 7x(x - 2) - 5(x - 1) = 7x2 + 3
=> 7x2 - 14x - 5x + 5 = 7x2 + 3
=> 7x2 - 14x - 5x + 5 - 7x2 - 3 = 0
=> -19x + 2 = 0
=> -19x = -2
=> x = \(\frac{2}{19}\)
c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
=> 10x - 16 - 12x + 15 = 12x - 16 + 11
=> 10x - 16 - 12x + 15 - 12x + 16 - 11 = 0
=> (10x - 12x - 12x) + (-16 + 15 + 16 - 11) = 0
=> -14x + 4 = 0
=> -14x = -4
=> -7x = -2
=> x = 2/7
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21
x4 - 7x3 +13x2 - 7x +12 =0
<=>x4-7x3+12x2+x2-7x+12=0
<=>x2(x2-7x+12)+(x2-7x+12)=0
<=>(x2-7x+12)(x2+1)=0
<=>[x2-4x-3x+12](x2+1)=0
<=>[x(x-4)-3(x-4)](x2+1)=0
<=>(x-3)(x-4)(x2+1)=0
<=>x-3=0 hoặc x-4=0 hoặc x2+1=0
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=4\end{array}\right.\).Ta thấy: \(x^2+1\ge1>0\) -->vô nghiệm
Vậy pt trên có nghiệm là x=3 hoặc 4
\(x^4-7x^3+13x^2-7x+12=0\\ < =>x^4-7x^3+12x^2+x^2-7x+12=0\\ < =>\left(x^2-7x+12\right)\left(x^2+1\right)=0\\ \)
\(< =>\left[x^2-4x-3x+12\right]\left(x^2+1\right)=0\\ < =>\left(x-3\right)\left(x-4\right)\left(x^2+1\right)=0\\ \)
x-3=0 hoặc x-4=0 . Ta thấy :x2+1\(\ge\)1>0--> vô nghiệm
Vậy pt trên có nghiệm là x=3;x=4
Với x = 6 ta có
A= 65 - 7.64 + 7.63 - 7.62 + 7.6 - 1
= 65 - (6+1).64 + (6+1).63 - (6+1).62 + (6+1).6 - 1
= 65 - 65 - 64 + 64 + 63 - 63 - 62 + 62 + 6 - 1
= 5
b) x(x - 3)+ 4( 3 - x) =0
=> x(x - 3) - 4( x - 3) = 0
=> (x - 3)( x - 4) =0
<=> x - 3 = 0 hoặc x - 4= 0
=> x= 3 hoặc => x= 4
Vậy x= 3 hoặc 4
a) 7x2 - 2x3 + 56 - 16x = 0
=> x2 ( 7 - 2x) + 8 ( 7 - 2x) = 0
=> ( 7 - 2x) ( x2 +8) =0
<=> 7 - 2x = 0 hoặc x2 + 8 =0
=> x= 7/2 hoặc x2 = -8 ( loại vì x2 \(\ge\) 0 )
Vậy x= 7/2
\(\left(7x+3\right)^2-\left(7x-1\right)\left(7x-3\right)=-12\)
\(\Rightarrow49x^2+42x+9-\left(49x^2-21x-7x+3\right)=-12\)
\(\Rightarrow70x+18=0\) \(\Rightarrow x=-\dfrac{18}{70}=-\dfrac{9}{35}\)