Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
(3n+2):(n-1) = 3 + 5/(n-1)
Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
n="1" Ta thay n=1 thì 1+1/3*1-2
1+1=2 (1)
3*1-2=1
1+1/3*1-2=2/1=2
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
= -(42.56) + 28.(-316).1
= -2352 - (28.316)
= -2352 - 8848
= -11200
Tk mk nha
Gọi d là ƯCLN( n+2 ;3n+1)
=>n +2 chia hết cho d và 3n+1 chia hết cho d
=> 3n+6 chia hết cho d và 3n + 1 chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư(5) =(1;5)
Vậy ƯC ( n+2;3n+1) =(1;5)
UCLN =d
(2n+1) &(3n-1) chia het cho d
3(2n+1) chia het d
2(3n-1) chia het cho d
3(2n+1)-2(3n-1) chia het cho d
6n+3-6n+2 chia het cho d
5 chia het cho d
d lon nhat => d=5
3 phut ko du thoi vay