Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :
\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)
Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)
Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)
Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :
\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)
Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)
Từ đó ta có 2 tiếp tuyến cần tìm là :
\(y=15x-12\sqrt{6}-15\)
\(y=15x+12\sqrt{6}-15\)
Ta có \(y'=3x^2-6x\)
Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)
Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)
Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)
\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)
Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán
\(M=\left(x_0;y_0\right)\)
Hệ số góc của tiếp tuyến của (C) qua M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)
Vì tiếp tuyến qua M song song với đường thẳng \(y=9x+2\) nên \(k=9\)
\(\Rightarrow3x_0^2-6x_0=9\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)
\(x_0=3\Rightarrow y_0=2\Rightarrow Pttt:y=9\left(x-3\right)+2=9x-25\)
\(x_0=-1\Rightarrow y_0=-2\Rightarrow Pttt:y=9\left(x+1\right)-2=9x+7\)
Lấy \(M\left(m;m^4-5m^2+4\right)\in\left(C\right)\)
Suy ra phương trình (C) tại M : \(y=\left(4m^3-10m\right)\left(x-m\right)+m^4-5m^2+4\left(d\right)\)
Hoành độ của (d) và (C) là nghiệm của phương trình :
\(x^4-5x^2+4=\left(4m^3-10m\right)\left(x-m\right)+m^4-5m^2+4\)
\(\Leftrightarrow\left(x-m\right)^2\left(x^2+2mx+3m^2-5\right)=0\left(1\right)\)
Yêu cầu bài toán \(\Leftrightarrow x^2+2mx+3m^2-5=0\) có 2 nghiệm phân biệt khác m :
\(\Leftrightarrow\begin{cases}5-2m^2>0\\6m^2-5\ne0\end{cases}\)
Vậy \(m\in\left(-\frac{\sqrt{10}}{2};\frac{\sqrt{10}}{2}\right)\)\ \(\left\{\pm\frac{\sqrt{30}}{6}\right\}\)
a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)
Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu
\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)
Vậy \(0< m< 3\) là giá trị cần tìm
b) Khi m = 1 ta có : \(y=x^3-2x\).
Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)
Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)
Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)
Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)
\(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)
\(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\) \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)
Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)
Phương trình hoành độ giao điểm \(3x^2+2mx+3m-4=0\left(1\right)\) với x. Đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\begin{cases}9m^2-36m+48>0\\0.m-1\ne0\end{cases}\) (đúng với mọi m)
Gọi \(x_1;x_2\) là các nghiệm của phương trình (1), ta có : \(\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{3m-4}{3}\end{cases}\) (*)
Giả sử \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)
Khi đó ta có \(OA=\sqrt{x^2_1+\left(x_1+m\right)^2};OA=\sqrt{x^2_2+\left(x_2+m\right)^2}\)
Kết hợp (*) ta được \(OA=OB=\sqrt{x_1^2+x_2^2}\)
Suy ra tam giác OAB cân tại O
Ta có \(AB=\sqrt{2\left(x_1-x_2\right)^2}\). Tam giác OAB đều \(\Leftrightarrow OA^2=AB^2\Leftrightarrow x_1^2+x_2^2=2\left(x_1-x_2\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow m^2-6m+8=0\Leftrightarrow m=2\) hoặc m=4
Gọi \(A\left(a;\frac{2a}{a-1}\right);B\left(b;\frac{2b}{b-1}\right);\left(a,b\ne0;a,b\ne1;a\ne b\right)\) thuộc đồ thị (C)
Khi đó hệ số góc của các đường tiếp tuyếb rại A; B lần lượt là :
\(k_1=-\frac{2}{\left(a-1\right)^2};k_2=-\frac{2}{\left(b-1\right)^2};\)
Do các đường tiếp tuyến song song nên :
\(-\frac{2}{\left(a-1\right)^2}=-\frac{2}{\left(b-1\right)^2};\)
\(\Leftrightarrow a+b=2\)
Mặt khác, ta có : \(\overrightarrow{OA}=\left(a;\frac{2a}{a-1}\right);\overrightarrow{OB}=\left(b;\frac{2b}{b-1}\right)\)
Do OAB là tam giác vuông tại O nên \(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow ab+\frac{4ab}{\left(a-1\right)\left(b-1\right)}=0\)
Ta có hệ : \(\begin{cases}a+b=2\\ab+\frac{4ab}{\left(a-1\right)\left(b-1\right)}=0\end{cases}\)
Giải hệ ta được : \(\begin{cases}a=-1\\b=3\end{cases}\) hoặc \(\begin{cases}a=3\\b=-1\end{cases}\)
Vậy 2 điểm cần tìm có tọa độ là : (-1;1) và (3;3)
Đáp án C
Ta có:
Suy ra PTTT của (C) tại M là
Khi đó PT hoành độ giao điểm của (C) và là:
Gọi \(M\left(x_0;x^3_0-3x_0+2\right)\) là tiếp điểm. Phương trình tiếp tuyến là :
\(\Delta:y=\left(3x^2_0-3\right)\left(x-x_0\right)+x^3_0-3x_0+2\)
Giả sử \(N\left(a;a^3-3a+2\right)\in\left(C\right),\left(a\ne x_0\right)\)
Tiếp tuyến \(\Delta\) đi qua N nên :
\(a^3-3a+2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0+2\)
\(\Leftrightarrow\left(a-x_0\right)^2\left(a+2x_0\right)=0\Leftrightarrow a=-2x_0;\left(x_0\ne a\right)\)
Suy ra \(N\left(-2x_0;-8x_0^3+6x_0+2\right)\)
Ta có \(MN=2\sqrt{6}\Leftrightarrow9x^2_0+\left(9x_0^3-9x_0\right)^2=24\Leftrightarrow x^2_0=\frac{4}{3}\)
Ta được 2 điểm là \(M\left(\frac{2\sqrt{3}}{3};\frac{10\sqrt{3}}{9}+2\right):M\left(-\frac{2\sqrt{3}}{3};\frac{10\sqrt{3}}{9}+2\right)\)