Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 3 ⋮ n - 1 ⇔ n - 1 + 4 ⋮ n -1 ⇔ 4 ⋮ n - 1 ⇔ n -1 \(\in\) Ư(4)
Ư(4) = { -4; -2; -1; 1; 2; 4}
Lập bảng ta có:
n-1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -3 | -1 | 0 | 2 | 3 | 5 |
Từ bảng trên ta có: n + 3 ⋮ n - 1 ⇔ n \(\in\) { -3; -1; 0; 2; 3; 5}
a.
n+3 chia hết cho n+1
=> n+1+2 chia hết cho n+1
=>(n+1)+2 chia hết cho n+1
=> 2 chia hết cho n+1
=> n +1 thuộc Ư(2)={-1,-2,1,2}
n+1 | -1 | -2 | 1 | 2 |
n | -2 | -3 | 0 | 1 |
Vậy....
b.
n+4 chia hết cho n-1
=> n-1+5 chia hết cho n-1
=> (n-1)+5 chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-1,-5,1,5}
n-1 | -1 | -5 | 1 | 5 |
n | 0 | -4 | 2 | 6 |
Vậy....
suy ra 11 chia hết cho n-4(n-4+11 chia hết cho n-4)
n-4 thuộc ước của 11={+-1;+-11) suy ra N thuộc{5;3;-7;15}
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
\(n+1⋮n^2+1\Rightarrow n\left(n+1\right)⋮n^2+1\)
\(\Rightarrow n^2+1+n-1⋮n^2+1\)
\(\Rightarrow n-1⋮n^2+1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n^2+1\)
\(\Rightarrow2⋮n^2+1\)
\(\Rightarrow n^2+1=Ư\left(2\right)\)
Mà \(n^2+1\ge1;\forall n\Rightarrow\left\{{}\begin{matrix}n^2+1=1\\n^2+1=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^2=0\\n^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=0\\n=-1\\n=1\end{matrix}\right.\)
\(\dfrac{n+1}{n-2}=\dfrac{n-2+3}{n-2}=1+\dfrac{3}{n-2}\)
Để n + 1 chia hết cho n - 2 thì n - 2 thuộc ước 3
Lập bảng giá trị => các giá trị của n là :........
Ta có ( n + 1 ) ⋮ ( n - 2 ) ⇒ ( n - 2 + 3 ) ⋮ ( n - 2 )
Vì ( n - 2 ) ⋮ ( n - 2 ) nên 3 ⋮ ( n - 2 ) hay ( n - 2 ) ϵ Ư( 3 ) = { -1; 1; 3; -3 }
Nếu n - 2 = -1 ⇒ n = 1
Nếu n - 2 = 1 ⇒ n = 3
Nếu n - 2 = 3 ⇒ n = 5
Nếu n - 2 = -3 ⇒ n = -1
Vậy n ϵ { -1; 1; 3; 5 } để ( n + 1 ) ⋮ ( n - 2 )
bệnh lười tái phát :)) chỉ lm 1 câu
\(n-8⋮n-3\)
\(n-3-5⋮n-3\)
\(-5⋮n-3\)
\(\Rightarrow n-3\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng ...
a)có:n-8=(n-3)-5 Mà N-3 chia hết cho n-3 =>-5 chia hết cho n-3 =>n-3 e {5;-5;1;-1} =>n e {8;-2;4;2} b)có:n+7=(n+2)+5 Mà n+2 chc n+2 =>5 chc n+2 =>n e {3;-7;-1;-3} c) có:n-7=(n-4)-3 (lm như câu a) e: thuộc ;chc:chia hết cho HOK TỐT
Bài làm
Ta có :
\(n-4⋮n-3\)
\(\Rightarrow\)\(n-3-1⋮n-3\)
Vì \(n-3⋮n-3\)
nên \(1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left(1;-1\right)\)
\(\Rightarrow n\in\left(4;2\right)\)
Vậy n = 4 ; 2