\(A=x^3+3x^2+x+3\)là lũy thừa số nguyên tố.

Bài...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Ta có \(A=\left(x+3\right)\left(x^2+1\right)\)

Mà A là lũy thừa số nguyên tố

=> \(\orbr{\begin{cases}x^2+1⋮x+3\\x+3⋮x^2+1\end{cases}}\)

+ Nếu \(x+3\ge x^2+1\)

=> \(-1\le x\le2\)

Thay vào ta được \(x=\left\{-1,0,1,2\right\}\)thỏa mãn đề bài 

+ Nếu \(x+3< x^2+1\)

=> \(\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)

=> \(x^2+1=k\left(x+3\right)\)với k là số nguyên

=> \(k=\frac{x^2+1}{x+3}=\frac{x^2-9+10}{x+3}=x-3+\frac{10}{x+3}\)là số nguyên

=> \(x+3\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)

=> \(x\in\left\{-13,-8,-5,-4,-2,-1,2,7\right\}\)

Kết hợp với ĐK và thay vào ta được

\(x\in\left\{-2,-1,0,1,2\right\}\)

12 tháng 6 2019

Em nhầm xin lỗi

\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)

Để A có giá trị nguyên thì

\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)

\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)

\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

15 tháng 6 2019

Có bạn nào làm được câu b không??

10 tháng 4 2018

 B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)

Vì n+2 < n+4 => n + 2 = 1 => n = -1

=> A = 3 nguyên tố, thoả

B2: x + y + xy = 2

=> x(y+1) + (y+1) = 3

=> (x+1)(y+1) = 3

Ta có:

x+113-1-3
y+131-3-1
x02-2-4
y20-4-2

        Vậy (x,y) = .....................

B3: a : b = c dư r

=> 112 : b = 5 dư r

=> 112 : 5 = b dư r

=> 112 - r chia hết cho 5 và r < 5

=> r = 2 => b = 22

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

17 tháng 9 2020

Cần có \(x^4+4\)là số nguyên tố nên ta đặt \(x^4+4=p\)với p là số nguyên tố roi giải PT nghiệm nguyên cho x theo p.

Có \(x^4+4=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)=p\)

Khi đó \(\left(x^2-2x+2\right),\left(x^2+2x+2\right)\inƯ\left(p\right)=\left\{1;p\right\}\)

\(\Rightarrow\hept{\begin{cases}x^2-2x+2=1\\x^2+2x+2=p\end{cases}\Rightarrow\hept{\begin{cases}x=1\\p=5\end{cases}}}\)

cho a,b thuộc n* và a/b tối giản .CMR :\(\frac{a}{a+b}\)tối giảntìm tất cả các số nguyên tố p sao cho p+2 và p+4laf số nguyên tố cho đương thẳng cy đi qua O .Trên cùng 1 nửa mặt phẳng bờ xy kẻ O z Ot sao cho \(\widehat{xOy}=130^0,\widehat{yOt}=100^0\)a)CMROz là tia phân giác \(\widehat{yOt}\)b)gọi Om là tia phân giác \(\widehat{zOt}\).tính \(\widehat{mOy}\)10 tìm số tự nhiên x sao...
Đọc tiếp

cho a,b thuộc n* và a/b tối giản .CMR :\(\frac{a}{a+b}\)tối giản

tìm tất cả các số nguyên tố p sao cho p+2 và p+4laf số nguyên tố 

cho đương thẳng cy đi qua O .Trên cùng 1 nửa mặt phẳng bờ xy kẻ O z Ot sao cho \(\widehat{xOy}=130^0,\widehat{yOt}=100^0\)

a)CMROz là tia phân giác \(\widehat{yOt}\)

b)gọi Om là tia phân giác \(\widehat{zOt}\).tính \(\widehat{mOy}\)

10 tìm số tự nhiên x sao cho:

\(\left(x-5\right)\frac{30}{100}=\frac{20x}{100}+5\)

11 tìm giá terij nguyên của n   để đạt GTLN

a|)D=\(\frac{n+1}{n-2}\)

b)\(\frac{1}{7-n}\)

c)\(\frac{27-2n}{12-n}\)

12 tìm giá trị nguyên của x để biểu thức sau có GTLN

a)A=\(\frac{1}{x-3}\)

b)\(\frac{7-x}{x-5}\)

c)\(\frac{5x+13}{x-4}\)

tí nữa mong các bn giải hộ ai làm đc hết mk tick cho 10 tik còn ai làm đầu tiên của mỗi bài thì đc 1 tik thôi

nếu học sinh lớp 7,8,9,10,11,12 ko làm đc thì học lại nhé

cho tôi hỏi nha ai học giỏi những môn toán văn anh lí thì kb vs tôi nha hết lượt rồi

0