Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)
Để A có giá trị nguyên thì
\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)
\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)
\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)
Vì n+2 < n+4 => n + 2 = 1 => n = -1
=> A = 3 nguyên tố, thoả
B2: x + y + xy = 2
=> x(y+1) + (y+1) = 3
=> (x+1)(y+1) = 3
Ta có:
x+1 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 2 | 0 | -4 | -2 |
Vậy (x,y) = .....................
B3: a : b = c dư r
=> 112 : b = 5 dư r
=> 112 : 5 = b dư r
=> 112 - r chia hết cho 5 và r < 5
=> r = 2 => b = 22
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Cần có \(x^4+4\)là số nguyên tố nên ta đặt \(x^4+4=p\)với p là số nguyên tố roi giải PT nghiệm nguyên cho x theo p.
Có \(x^4+4=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)=p\)
Khi đó \(\left(x^2-2x+2\right),\left(x^2+2x+2\right)\inƯ\left(p\right)=\left\{1;p\right\}\)
\(\Rightarrow\hept{\begin{cases}x^2-2x+2=1\\x^2+2x+2=p\end{cases}\Rightarrow\hept{\begin{cases}x=1\\p=5\end{cases}}}\)
Ta có \(A=\left(x+3\right)\left(x^2+1\right)\)
Mà A là lũy thừa số nguyên tố
=> \(\orbr{\begin{cases}x^2+1⋮x+3\\x+3⋮x^2+1\end{cases}}\)
+ Nếu \(x+3\ge x^2+1\)
=> \(-1\le x\le2\)
Thay vào ta được \(x=\left\{-1,0,1,2\right\}\)thỏa mãn đề bài
+ Nếu \(x+3< x^2+1\)
=> \(\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)
=> \(x^2+1=k\left(x+3\right)\)với k là số nguyên
=> \(k=\frac{x^2+1}{x+3}=\frac{x^2-9+10}{x+3}=x-3+\frac{10}{x+3}\)là số nguyên
=> \(x+3\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)
=> \(x\in\left\{-13,-8,-5,-4,-2,-1,2,7\right\}\)
Kết hợp với ĐK và thay vào ta được
\(x\in\left\{-2,-1,0,1,2\right\}\)
Em nhầm xin lỗi