Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
a: =>\(\left\{{}\begin{matrix}\dfrac{13}{11}-x>\dfrac{7}{9}\\\dfrac{13}{11}-x< \dfrac{15}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{7}{9}-\dfrac{13}{11}=-\dfrac{170}{209}\\-x< \dfrac{15}{16}-\dfrac{13}{11}=-\dfrac{43}{176}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{170}{209}\\x>\dfrac{43}{176}\end{matrix}\right.\)
b: =>-2<x-1<2
=>-1<x<3
A)0,25:(10,3-9,8)-3/4
=1/4:(103/10-49/5)-3/4
=1/4:1/2-3/4
=1/2-3/4
=2/4-3/4
=-1/4
B)-5/9.13/28-13/28.4/9
=-5/9-4/9.13/28
=-1.13/28
=-13/28
c)6/7+5/8:5-3/16
=6/7+1/8-3/16
=55/56-3/16
=89/112
d)-5/7.2/11+-5/7.9/11+1/5/7
=-5/7.(2/11+9/11)+12/7
=-5/7.1+12/7
=-5/7+12/7
=1
e)-7/12-8/15+11/20
=-67/60+11/20
=-17/30
f)-17/25.20/33+-17/25.13/33+-3/25
=-17/25.(20/33+13/33)-3/25
=-17/25.1-3/25
=-17/25-3/25
=-4/5
CHÚC BẠN HỌC TỐT...............
NẾU ĐÚNG THÌ TICK CHO MK VỚI NHA HELLO HELLO..........
Ta có : a, 25/7 + 13/21 - 11/7 + 17/21 + 1/3 .
= ( 25/7 - 11/7 ) + ( 13/21 + 17/21 + 1/3 ) .
= 2 + ( 20/21 + 7/21 ) .
= 2 + 9/7 .
= 23/7 .
b, ( 1/3 + 12/67 + 13/41 ) - ( 79/67 - 28/41 ) .
= 1/3 + 12/67 + 13/41 - 79/67 + 28/41 .
= 1/3 + ( 12/67 - 79/67 ) + ( 13/41 + 28/41 ) .
= 1/3 - 1 + 1 .
= 1/3 .
c, ( 11/4 . -5/9 - 4/9 . 11/4 ) . 8/33 .
= [ 11/4 . ( -5/9 - 4/9 ) ] . 8/33 .
= [ 11/4 . ( - 1 ) ] . 8/33 .
= -11/4 . 8/33 .
= -2/3 .
d, 38/45 - ( 8/45 - 17/51 - 3/11 ) .
= 38/45 - 8/45 + 17/51 + 3/11 .
= 2/3 + 17/51 + 3/11 .
= 374/561 + 187/561 + 153/561 .
= 14/11 .
a) Ta có: \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(b > 0, d > 0)
Nếu \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) (b > 0, d > 0) thì ad = bc.
=> Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.
Vậy nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.
a) Ta có: \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
=> \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\)
=> ad < bc
Vậy ad < bc
b) Ta có: ad < bc
=> \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
Vậy \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
a: 2x(x-1/7)=0
=>x(x-1/7)=0
=>x=0 hoặc x=1/7
b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)
nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)
c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)
\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)
\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1\right\}\)
a/Ta có: \(\dfrac{4}{3}-\left[\left(\dfrac{-11}{6}\right)-\left(\dfrac{2}{9}+\dfrac{5}{3}\right)\right]\)
\(=\) \(\dfrac{4}{3}-\left[\dfrac{-11}{6}-\dfrac{2}{9}-\dfrac{5}{3}\right]\)
\(=\) \(\dfrac{4}{3}+\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{3}\)
\(=\) \(\dfrac{24}{18}+\dfrac{33}{18}+\dfrac{4}{18}+\dfrac{30}{18}\)
\(=\) \(\dfrac{91}{18}\)
b/Ta có: \(\left(8-\dfrac{9}{4}+\dfrac{2}{7}\right)-\left(-6-\dfrac{3}{7}+\dfrac{5}{4}\right)-\left(3+\dfrac{2}{4}-\dfrac{9}{7}\right)\)
\(=\) \(8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=\) \(8+6-3-\dfrac{9}{4}-\dfrac{5}{4}-\dfrac{2}{4}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}\)
\(=\) \(11-\dfrac{2}{4}+\dfrac{14}{7}\)
\(=\) \(11-\dfrac{1}{2}+2\)
\(=\) \(9-\dfrac{1}{2}\)
\(=\) \(\dfrac{17}{2}\)
Chúc bn học tốt!!!
\(a)\dfrac{5}{4}.\dfrac{-12}{7}=\dfrac{5.\left(-12\right)}{4.7}=\dfrac{-60}{28}=\dfrac{-15}{7}\)
\(b)\dfrac{-4}{3}:\dfrac{13}{9}=\dfrac{-4}{3}.\dfrac{9}{13}=\dfrac{\left(-4\right).9}{3.13}=\dfrac{-36}{39}=\dfrac{-12}{13}\)
\(c)\dfrac{-5}{7}.\dfrac{49}{3}:\dfrac{7}{-6}=\dfrac{-5}{7}.\dfrac{49}{3}:\dfrac{-7}{6}=\dfrac{-35}{3}.\dfrac{-6}{7}=10\)
\(d)\left(-\dfrac{9}{25}\right):6=\dfrac{-3}{50}\)
Chúc bn học tốt!
\(\dfrac{-9}{11}< \dfrac{7}{a}< \dfrac{-9}{13}\\ \Rightarrow\dfrac{63}{-77}< \dfrac{63}{9a}< \dfrac{63}{-91}\\ \Rightarrow-77>9a>-91\)
Với \(a\inℤ\Rightarrow9a⋮9\)
Do đó \(9a\in\left\{-81;-90\right\}\)
\(\Rightarrow a\in\left\{-9;-10\right\}\)
Vậy số hữu tỉ thỏa mãn là: \(\dfrac{7}{-9};\dfrac{7}{-10}\)