Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)
Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)
\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)
\(\Rightarrow A⋮2\forall n\in N\)
Mà 2 là số nguyên tố duy nhất mà chia hết cho 2
\(\Rightarrow n^3-6n^2+9n-2=2\)
\(\Leftrightarrow n^3-6n^2+9n-4=0\)
Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))
Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.
CHÚ Ý!!! : Vì \(n\inℕ\)nên\(n^2+9n+20\)phải lớn hơn 20, suy ra nếu có thể, số nguyên tố này phải là số lẻ
Nếu \(n⋮2\)thì: \(\hept{\begin{cases}n^2⋮2\\9n⋮2\\20⋮2\end{cases}}\Rightarrow\left(n^2+9n+20\right)⋮2\)=> Ko thể là số nguyên tố.
Nếu n là số lẻ(Cách viết khác khi n là số lẻ)thì: n^2 là số lẻ, 9n cũng là số lẻ, 20 là số chẵn ==> \(\left(n^2+9n+20\right)⋮2\)==>Ko thể là số nguyên tố.
Vậy ko có trường hợp n nào thỏa mãn (n^2 + 9n + 20) là số nguyên tố ạ
\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)
\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)
\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)
Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.
\(\Rightarrow n-3=1\)
\(\Rightarrow n=4\)
Thử lại : \(B=103\left(TM\right)\)
Đặt \(\hept{\begin{cases}A=3^{3m^2+6n-61}+4\\t=3m^2+6n-61\end{cases}}\)
Ta có t chia cho 3 dư 2 nên t = 3k + 2
\(A=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(9.27^k\)chia cho 13 dư 9
\(\Rightarrow9.27^k+4\) chia hết cho 13
Vậy A = 13
=> k = 0 => t = 2
=> 3m2 + 6n - 61 = 2
<=> m2 + 2n = 21
Ta nhận xét là m2 là bình phương của số lẻ nhỏ hơn 21
=> m2 = (1, 9)
=> m = (1; 3)
=> n = (10; 6)
a/ A = \(n^3-4n^2+4n-1=\left(n-1\right)\left(n^2-3n+1\right)\) là số nguyên tố. Khi và chỉ khi :
\(\left[{}\begin{matrix}n-1=1\\n^2-3n+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=3\end{matrix}\right.\)
Thử lại ta thấy n = 3 là thỏa mãn.
Vậy n = 3
b/ \(n^3-6n^2+9n-2=\left(n-2\right)\left(n^2-4n+1\right)\) là số nguyên tố. Khi và chỉ khi:
\(\left[{}\begin{matrix}n-2=1\\n^2-4n+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=4\end{matrix}\right.\)
Thử lại ta thấy n = 4 là thỏa mãn
Vậy n = 4
Ta có: \(3m^2+6n-61\)chia cho 3 dư 2 nên ta đặt
\(3m^2+6n-61=3k+2\)
\(\Rightarrow A=3^{3m^2+6n-61}+4=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(27^k\)chia 13 dư 1
\(\Rightarrow9.27^k\)chia 13 dư 9
\(\Rightarrow9.27^k+4\)chia hết cho 13 hay A chia hết cho 13
Mà A là số nguyên tố nên A = 13
\(\Rightarrow k=0\)
\(\Rightarrow3m^2+6n-61=2\)
\(\Leftrightarrow m^2+2n=21\left(1\right)\)
Từ (2) ta có được m2 phải là số lẻ và nhỏ hơn 21
\(\Rightarrow m^2=\orbr{\begin{cases}1\\9\end{cases}\Rightarrow m=\orbr{\begin{cases}1\\3\end{cases}}}\)
\(\Rightarrow n=\orbr{\begin{cases}10\\6\end{cases}}\)
Vậy giá trị \(\left(m,n\right)=\left(1,10;3,6\right)\)