Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số tự nhiên x,y biết
X4y là số lẻ chia hết cho 9 và khi chia cho 5 dư 3
Các bạn giúp mình nha
vì x4y chia 5 dư 3 nên y=3 hoặc 8
vì x4y là số lẻ nên y=3
x+4+3 chia hết cho 9
x+7 chia hết cho 9
=>x = 2
vậy x4y = 243.
bt 1 giải
vì 1960 / a dư 28 nên 1960 - 28 = 1932 chia hết cho a ( a > 28 )
vì 2002 / a dư 28 nên 2002 - 28 = 1974 chia hết cho a ( a> 28 )
=> a thuộc ƯC ( 1932 ; 1974 )
ta có 1932 = 22 . 3 . 7 . 23
1974 = 2 . 3 . 7 .47
=> ƯCLN ( 1932 ; 1974 ) = 2 . 3 .7 = 42
=> ƯC ( 1932 ; 1972 ) = Ư ( 42 ) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
theo trên ta có
a > 28 nên a = 42
bt 2
vì 45=5.9 nên ( 5;9 ) = 1 nên số 4x5y : 45 thì phải chia hết cho 5 và 9
=> y = 0 hoặc 5
trường hợp 1 y= 0 thì 4x50 chia hết cho 9 => ( 4+x+5+0) chia hết cho 9 => (9+x) chia hết cho 9 => x chia hết cho 9 => x= 0 hoặc 9
trường hợp 2 y=5 thì 4x55 chia hết cho 9 => (4+x+5+5) chia hết cho 5 => (14+x) chia hết cho 9 => x = 4
vậy x=0 ; y=0 có 4050 chia hết 45
x=9 ; y=0 có 4950 chia hết 45
x=4 ; y=5 có 4455 chia hết 45
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
\(\overline{x4y}⋮5\Rightarrow\orbr{\begin{cases}y=0\\y=5\end{cases}}\)mà \(\overline{x4y}\)là số chẵn nên \(y=0\).
\(\overline{x40}⋮9\Rightarrow x+4+0⋮9\Rightarrow x=5\).