K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Xin hỏi cậu học lớp mấy ?

6 tháng 4 2019

mình học lớp 6

8 tháng 4 2020

=> (1+2X-1)x (2x-1+1)/4=225

=> 2x+2x/4=225

=> 4x^2/4=225

=> x^2= 225

=> x=15

cái ^ là mũ nha bạn

chúc bn hok tốt

16 tháng 3 2022

`Answer:`

a. Tổng: \([\left(2x-1\right)-1]:2+1=x\) số hạng

Ta có: \(1+3+5+7+9+...+\left(2x-1\right)=225\)

\(\Rightarrow x.\left(2x-1+1\right):2=225\)

\(\Leftrightarrow2x^2:2=225\)

\(\Leftrightarrow x^2=225\)

\(\Leftrightarrow x=15\)

b. Mình sửa đề nhé: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2015}=2^{2019}-8\)

\(\Rightarrow2^x.\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\)

Ta đặt \(K=1+2+2^2+...+2^{2015}\)

\(\Rightarrow2^x.K=2^{2019}-8\)

\(\Rightarrow2K=2.\left(1+2+2^2+...+2^{2015}\right)\)

\(\Rightarrow2K=2+2^2+2^3+...+2^{2015}+2^{2016}\)

\(\Rightarrow2K-K=\left(2+2^2+2^3+...+2^{2015}+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)

\(\Rightarrow K=2^{2016}-1\)

\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^{2019}-8\)

\(\Rightarrow2^{x+2016}-2^x=2^{2019}-2^3\)

\(\Rightarrow\hept{\begin{cases}x+2016=2019\\x=3\end{cases}}\Rightarrow x=3\)

1 tháng 3 2019

\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)

\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-2^3\)

\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Leftrightarrow2^x=2^3\)

\(\Leftrightarrow x=3\)

Vậy x = 3

7 tháng 4 2019

2 x + 2x+1+ 2 x+2+.......+ 2x+2015=22019-8

=2x.( 1+2+22+23+.....+ 2 2015)=22019- 23

đặt A= 1+2+22+...+22015

=>2A=2+22+23+..+22016

=>2A -A = ( 2+ 22+23+......+22016)-(1+2+22+........+22015)=A=22016-1

\(\Rightarrow\)2x.(22016-1)=23.(22016-1)

=>x=3

26 tháng 2 2020

Ta có : \(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)

\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\) (1)

Đặt : \(A=1+2+2^2+...+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2016}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)

\(\Rightarrow A=2^{2016}-1\)

Khi đó (1) trở thành :

\(2^x\left(2^{2016}-1\right)=2^{2019}-2^3\)

\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)\)

\(\Leftrightarrow x=3\)

Vậy : \(x=3\)

5 tháng 10 2021

vậy x=3 nhé

5 tháng 4 2020

Tham khảo thêm nà

Câu hỏi của Dìm BTS - Toán lớp 6 | Học trực tuyến

#Học tốt

16 tháng 7 2016

Theo đầu bài ta có:
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow\left(2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2016}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-8\)
\(\Rightarrow2^x\cdot2^{2016}-2^x=2^3\cdot2^{2016}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)

31 tháng 3 2021

cảm ơn

20 tháng 1 2024

2^x.[1+2+2^2+....+2^2015]­=2^2019-8

ta co A=1+2+2^2+....+2^2015

2A=2+2^2+2^3+....+2^2016

2A-A=2^2016-1

thay A vao ta co 

2^ x.[2^2016-1]=2^2016.2^3-2^3

2^x=2^3.[2^2016-1]:[2^2016-1]

2^x=2^3

=>x=3

19 tháng 3 2018

\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2017}-2\)

=\(2^x.\left(2^1+2^2+2^3+...+2^{2015}\right)=2^{2017}-2\)

=\(2^x.\left(2^2+2^3+2^4+...+2^{2015}+2^{2016}\right)=2^{2017}-2\)

=\(2^x.2^{2016}-2=2^{2017}-2\)

=\(2^{2016+x}=2^{2017}\)

\(\Rightarrow2016+x=2017\)

\(x=2017-2016\)

\(x=1\)