Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2^n -1-2-2^2-2^3- ......... - 2^100 = 1
=> 2^n= 1+1+2+2^2+2^3+ ........ + 2^100.
=> 2 x 2^n= 2+2+4+2^3+2^4+ ....... + 2^101
=> 2^n = 2 x 2^n - 2^n= (2+2+4+2^3+2^4+......+2^101) - (1+1+2+2^2+2^3+ ....... + 2^100) =(2 + 2^101) - ( 1+1)= 2 + 2^101 - 2 = 2^101.
=> n= 101.
Ta có 2A=\(2^2+2^3+...+2^{101}\)
=>2A-A=A=\(\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
=> A= \(2^{101}-2\)
Mà \(A+1=2^x\)
=> \(2^x=2^{101}-2^0\)
Bạn xem lại đề nhé mk cx ko rõ nữa
2A=\(2\left(2+2^2+2^3+....+2^{100}\right)\)
2A=\(2^2+2^3+2^4+.....+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...2^{101}\right)-\left(2+2^2+2^3+....+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
Vậy A= \(2^{101}-2\)
2n+5chia hết cho 2n+1
=>4n+10chia hết cho 4n+2
=>2n+5chia hết cho 2n+1
Ta có: 2n + 5 = (2n - 1) + 6
Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1
=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> 2n \(\in\){2; 3; 4; 7}
Do n \(\in\)N=> n \(\in\){1; 2}
1/ \(=3^n.3^2+3^n=3^n\left(3^2+1\right)=10.3^n⋮10\)
2/ \(100.x+\left(1+2+3+...+100\right)=7450\)
Đến đây bạn tự làm nốt nhé
1. Ta có: \(3^{n+2}+3^n=3^n.\left(3^2+1\right)=3^n.\left(9+1\right)=3^n.10⋮10\)( đpcm )
2. \(\left(x+1\right)+\left(x+2\right)+.......+\left(x+100\right)=7450\)
\(\Leftrightarrow x+1+x+2+........+x+100=7450\)
\(\Leftrightarrow100x+\frac{100.101}{2}=7450\)
\(\Leftrightarrow100x+5050=7450\)
\(\Leftrightarrow100x=2400\)\(\Leftrightarrow x=24\)
Vậy \(x=24\)
Bài 2 :
n + 5 chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5) = {1 ; 5}
b) 2016.(n - 3) + 11 chia hết cho n - 3
=> 11 chia hết cho n - 3
=> n - 3 thuộc Ư(11) = {1 ; 11}\
=> n = {4 ; 14}
c) n2 + 2n + 3 chia hết cho n + 2
n.(n + 2) + 3 chia hết cho n + 2
=> 3 chia hết cho n + 2
=> n + 2 thuộc U(3) = {1 ; 3}
=> n = {-1 ; 1}
a) 2(x + 2) + 3x = 29
2x + 4 + 3x = 29
5x = 29 - 4 = 25
x = 5
b) 720:[41 - (2x-5)]=23 . 5
41 - (2x - 5) = 720 : 40 = 180
2x - 5 = 41 - 180 = -139
2x = -139 + 5 = -134
x = (-134) : 2 = -67
c) (x + 1) + (x + 2) + ..... + (x + 100) = 5750
x + 1 + x + 2 + ........ + x + 100 = 5750
100x + (1 + 2 + 3 + ........... + 100) = 5750
100x + 5050 = 5750
100x = 700
x = 7
\(1+2+3+4+...+n=465\)
có n số hạng
\(\Rightarrow\left(n+1\right).n\div2=465\)
\(\Rightarrow\left(n+1\right).n=465.2\)
\(\Rightarrow\left(n+1\right).n=930\)
\(\Rightarrow\left(n+1\right).n=31.30\)
\(\Rightarrow n=30\)
Vậy \(n=30\)
Chieu nay nhek
Đặt B=2+2^2+2^3...+2^100
2B=2^2+2^3+2^4+.....+2^101
2B-B=2^2+2^3+...+2^101-2-2^2-...-2^100
B=2^101-2
Ta có:2^n-1-2-2^2-2^3-...-2^100=1
<=>2^n-1-(2+2^2+...+2^100)=1
<=>2^n-1-B=2^n-1-(2^101-2)=1
<=>2^n-(2^101-2)=2
<=>2^n=2+2^101-2=2^101
<=>n=101
Vậy n=101