\(x\) sao cho biểu thức P=(\(x\)-1)(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`P= (x-1)(x^2-x+1)` là một số nguyên tố

`=>` \(\left[{}\begin{matrix}x-1=1\\x^2-x+1=1\end{matrix}\right.\)

`<=>` \(\left[{}\begin{matrix}x=2\\x=0\\x=1\end{matrix}\right.\)

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)

19 tháng 8 2020

Để \(A=\frac{5}{x-2}\)có giá trị là 1 số nguyên thì:

\(5⋮x-2\)

Vì \(x\in Z\Rightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

x-21-15-5
x317-3

Vậy \(x\in\left\{3;-1;7;-3\right\}\)

Để \(B=\frac{x+2}{x-3}\)có giá trị là 1 số nguyên thì:

\(x+2⋮x-3\)

=> \(\left(x-3\right)+5⋮x-3\)

=> \(5⋮x-3\)

Sau đó tiếp tục lý luận và lập bảng tìm trường hợp như của x trong ý a.

Ý c thì mình đang bị mung lung tí '-'

16 tháng 7 2016

a)Để A là số nguyên thì x-2 chia hết cho x+1

         Do đó ta có:

\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)

             \(\Rightarrow x+1\inƯ\left(-3\right)\)

Vậy Ư(-3)là:[1,-1,3,-3]

                   Ta có bảng sau:

x+1-3-113
x-4-202

         Vậy x=-4;-2;0;2

b)Để B là số nguyên thì x+4 chia hết cho x-1

          Do đó ta có:

\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)

        \(\Rightarrow x-1\inƯ\left(5\right)\)

Vậy Ư(5)là:[1,-1,5,-5]

           Ta có bảng sau:

x-1-5-115
x-4026

Vậy x=-4;0;2;6

16 tháng 7 2016

c) Để \(\frac{2x+7}{x+2}\) là số nguyên

\(\Leftrightarrow2x+7⋮x+2\)

\(\Rightarrow\left(2x+4\right)+3⋮x+2\)

\(\Rightarrow2\left(x+2\right)+3⋮x+2\)

\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)

\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng sau :

x+2-3-113
x-5-3-11

Vậy \(x\in\left\{-3;-1;1;3\right\}\)

d) Để \(\frac{2x+9}{x+1}\) là số nguyên 

\(\Leftrightarrow2x+9⋮x+1\)

\(\Rightarrow\left(2x+2\right)+7⋮x+1\)

\(\Rightarrow2\left(x+1\right)+7⋮x+1\)

\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)

\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng sau :

x+1-7-117
x-8-206

Vậy \(x\in\left\{-8;-2;0;6\right\}\)

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...

25 tháng 3 2018

\(C=\frac{x^2-1}{x+1}\inℤ\Leftrightarrow x^2-1⋮x+1\)

\(\Rightarrow x\cdot x+x-x-1⋮x+1\)

\(\Rightarrow x\left(x+1\right)-x-1⋮x+1\)

     \(x\left(x+1\right)⋮x+1\)

\(\Rightarrow x-1⋮x+1\)

\(\Rightarrow x+1-2⋮x+1\)

     \(x+1⋮x+1\)

\(\Rightarrow2⋮x+1\)

\(\Rightarrow x+1\inƯ\left(2\right)\)

      \(x\inℤ\Rightarrow x+1\inℤ\)

\(\Rightarrow x+1\in\left\{-1;1;-2;2\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)