K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

a) x5 : xn

= x5-n

=> 5\(\ge\)n => n = 1;2;3;4;5

b) x2n:x5

= x2n-5

=> 2n - 5 \(\ge\) 0

=> 2n \(\ge\) 5

con c) chép thiếu đúng ko

d) xn+2y3 : x5y3

= (xn+2 : x5)(y3:y3)

= xn+2 : x5

= xn+2-5 = xn-3

=> n - 3\(\ge\)0

=> n \(\ge\) 3

e) x3n+1:x7

= x3n+1-7

= x3n-6

=> 3n -6 \(\ge\) 0

=> 3n \(\ge\) 6

=> n \(\ge\) 2

f) xnyn+3 : x6y10

= xn-6yn+3-10

= xn-6yn-7

=> n \(\ge\) 7

tik cho mik đi nha

8 tháng 10 2017

a, n= 1;2;3;4

b, n= bội của 5

tương tự nha! làm sao cho số mũ chia hết cho nha là được.

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

a)Để xn+2.yn+1 chia hết x5.y6 thì

\(\Leftrightarrow\hept{\begin{cases}n+2\ge5\\n+1\ge6\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge3\\n\ge5\end{cases}\Leftrightarrow}n\ge3}\)

Vậy n=0;1;2;3(vì n thuộc N)

a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)

\(=5n^2+5n+3⋮̸5\)

b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)

\(=-2\left(x^2y-xy^2\right)⋮2\)

6 tháng 10 2017

b) x8 +7x4+16

= x8+8x4-x4+16

= (x8+8x4+16) - x4

=(x4+4)2-x4

= (x4+4+x2)(x4+4-x2)

c) x5+x-1

= x5 - x4+x3+x4-x3+x2-x2+x-1

= x3(x2-x+1) + x2(x2-x+1) - (x2-x+1)

= (x2-x+1)(x3+x2 -1)

d)x7+x2+1

=x7-x+x2 +x+1

= x (x6-1) + (x2+x+1)

= x(x3-1)(x3+1) + (x2+x+1)

= x(x3+1)(x-1)(x2+x+1)+(x2+x+1)

= (x2+x+1)[x(x3+1)(x-1) +1]

= (x2+x+1)(x5-x4+x2-x+1)

= x (x-1)(x2+x+1)

e) x5+x4+1

= x5+x4+x3 - x3+1

= x3(x2+x+1) - (x-1)(x2+x+1)

= (x2+x+1)(x3-x+1)

f) x8+x+1

= x8-x2+x2+x+1

= x2(x6-1)+(x2+x+1)

= x2(x3-1)(x3+1) +(x2+x+1)

= (x5+x2)(x-1)(x2+x+1) +(x2+x+1)

= (x2+x+1)(x6-x5+x3-x2+1)

Bài làm :

\(a,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)

\(=8x+16-5x^2-10x+\left(4x-8\right)\left(x+1\right)+2\left(x^2-2^2\right)+10\)

\(=8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2-8+10\)

\(=\left(8x-10x+4x-8x\right)+\left(-5x^2+4x^2+2x^2\right)+\left(16-8-8+10\right)\)

\(=-6x+x^2+10\)

20 tháng 9 2020

a)\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)\(=8x+16-5x^2-2+4x-8x-8+2x-4x-4+10\)\(=\left(8x+4x-8x+2x-4x\right)+\left(16-2-8-4+10\right)+5x^2\)

\(=2x+12+5x^2\)

b)\(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)

\(=4x-4x-20-\left[x^2+5x+2x+10\right]-3\left[x^2+2x-1x-2\right]\)

\(=4x-4x-20-x^2-5x-2x-10-3x^2-6x+3x+6\)

\(=\left(4x-4x-5x-2x-6x+3x\right)+\left(-20-10+6\right)+\left(-x^2-3x^2\right)\)

\(=-10x-24-4x^2\)

c)\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\)

Xét tích \(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\Leftrightarrow\left(x^n\right)^3-\left(y^n\right)^3=x^{3n}-y^{3n}\)

Thay vào bt đã cho ta có \(\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)

\(\Leftrightarrow\left(x^{3n}\right)^2-\left(y^{3n}\right)^2=x^{6n}-y^{6n}\)