Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bn nhé !!!
theo đề ta có:a:9dư 5 ⇒2a-1 chia hết cho 9
a:7 dư 4 ⇒2a-1 chia hết cho7
a:5 dư 3 ⇒2a-1 chia hết cho 5
vì 2a-1 chia hết cho 9,7,4 và a nhỏ nhất ⇒2a-1 thuộc BCNN(9,7,4)
9=32, 5=5, 7=7
BCNN(9,7,4)=32.7.5=315
Ta có: 2a-1=315
2a= 315+1
2a=316
a=316:2
a=158
Vậy số cần tìm là :158
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$
Gọi số cần tìm là a
Vì a chia 3 dư 2 ⇒ a + 1 \(⋮\) 3 ( 1)
Vì a chia 5 dư 4 ⇒ a + 1 \(⋮\) 5 ( 2 )
Vì a chia 7 dư 6 ⇒ a + 1 \(⋮\) 7 ( 3 )
Từ (1);(2);(3) ⇒ a + 1 ∈ \(BC\left(3;5;7\right)\)
Ta có: \(BCNN\left(3;5;7\right)=105\)
\(BC\left(3;5;7\right)=B\left(105\right)=\) \(\left\{0;105;210;315;420;525;630;735;840;945;1050;...\right\}\)
⇒ a + 1 ∈ \(\left\{0;105;210;315;420;525;630;735;840;945;1050;...\right\}\)
⇒ a ∈ \(\left\{-1;104;209;314;419;524;629;734;839;944;1049;...\right\}\)
Ta thấy 944 là số tự nhiên lớn nhất có ba chữ số chia 3 dư 2, chia 5 dư 4, chia 7 dư 6
Vậy số cần tìm là 944
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
mình thấy bài này mấy lần rồi,,nhưng mình lại quên đáp án zùi
hay bạn thử vào gõ ý
x chia 5 du 3 => x=5k+3
x chia 7 du 4=> x=7n+4
=> 5k+3=7n+4
=>5k=7n+1
=> k=(7n+1)/5=\(\frac{5n+2n+1}{5}=n+\left(\frac{2n+1}{5}\right)\)
\(\frac{2n+1}{5}phainguyen=>2n+1=5.t=>n=\frac{5t-1}{2}=\frac{4t+t-1}{2}=2t+\frac{\left(t-1\right)}{2}\)
=>t=2p+1
\(n=2\left(2p+1\right)+p=5p+2\)
x=7n+4=7(5p+2)+4=35p+18
x nhỏ nhất=>p=0=> x=18
DS: X=18
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
gọi số đó là a
ta có: (a-3) chia hết cho 5
(a-4) chia hết cho 7
(a-5) chia hết cho 9
=> 2a-6 chia hết cho 5
2a-8 chia hết cho 7
2a-10 chia hết cho 9
=> 2a-1 chia hết cho 5;7;9
Mà a là số tự nhiên nhỏ nhất nên 2a-1=BCNN(5;7;9)=315
=> a=158
mình đâu có chia cho 9 đâu bạn