K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

mình thấy bài này mấy lần rồi,,nhưng mình lại quên đáp án zùi

hay bạn thử vào gõ ý

9 tháng 1 2016

Bài này ko thể có số a đó được bởi tính đến số hơn 100 vẫn ko ra

2 tháng 7 2015

Gọi số cần tìm là a (a \(\ne\) 0)
Do a chia 5 dư 1 nên a-1 chia hết cho 5 
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5 
=> a+9 chia hết cho 5 (1) 
Do a chia 7 dư 5 nên a-5 chia hết cho 7 
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7 
=> a+9 chia hết cho 7 (2) 
Từ (1) và (2) suy ra a+9 là bội của 5 và 7 
mà a nhỏ nhất nên a+9 = BCNN (5;7) = 35 
=> a = 26 
                      Vậy số phải tìm là 26 

2 tháng 7 2015

a nhỏ nhất choa 5 dư 3 chia 7 dư 4 chia 9 dư 5

=>a+157 chia hết cho 5;7;9

mà a là số nhỏ nhất =>a+157 là BCNN(5;7;9)=5.7.9=315

=>a=315-157=158

Vậy a=158

12 tháng 7 2017

               = 34

    Chắc chắn, *** nha  ^^

MK ĐẦU TIÊN.

10 tháng 11 2021

fhrecvhhhfdvbnt

10 tháng 11 2021
16:3,23:5,40:7
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$

$a-4\vdots 5\Rightarrow a+1\vdots 5$

$a-5\vdots 6\Rightarrow a+1\vdots 6$

Tức là $a+1$ là bội chung của $4,5,6$

$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$

$\Rightarrow a+1\vdots 60$

Đặt $a=60k-1$ với $k$ là số tự nhiên

$a\vdots 7$ tức là $60k-1\vdots 7$

$\Leftrightarrow 60k-1-56k\vdots 7$

$\Leftrightarrow 4k-1\vdots 7$

$\Leftrightarrow 4k-8\vdots 7$

$\Leftrightarrow 4(k-2)\vdots 7$

$\Leftrightarrow k-2\vdots 7$

Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$

$\Rightarrow a=60k-1=60.2-1=119$