K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố

Xét n>1:\(A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\)

\(=n^2\left(\left(n^3\right)^{670}-1\right)+n\left(\left(n^3\right)^{667}-1\right)+\left(n^2+n+1\right)\)

Mà \(\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^3-1\)

\(\Rightarrow\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^2+n+1\)

Tương tự \(\left(\left(n^3\right)^{667}\right)\)chia hết cho \(n^2+n+1\)

Vậy A chia hết cho \(n^2+n+1>1\)nên A là hợp số.Vậy \(n=1\)

22 tháng 11 2017

Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố

Xét n>1:A=n2012−n2+n2002−n+n2+n+1

=n2((n3)670−1)+n((n3)667−1)+(n2+n+1)

Mà ((n3)670−1)chia hết cho n3−1

⇒((n3)670−1)chia hết cho n2+n+1

Tương tự ((n3)667)chia hết cho n2+n+1

A chia hết cho n2+n+1>1nên A là hợp số.Vậy n=1
 

14 tháng 11 2019

\(B=n^5+n^4+1=\left(n^2+n+1\right)\left(n^3-n+1\right)\)

Xét \(n>2\)thì không thỏa mãn vì là tích của 2 số khác 1.

Xét n = 0 hoặc n = 1 hoặc n = 2 là xong

12 tháng 9 2016

Ta có A = n2012 - n2 + n2002 - n + n2 + n + 1

= n2[(n3)670 - 1] + n[(n3)667 - 1] + (n2 + n + 1)

= (n3 - 1)X + (n- 1)Y + (n2 + n + 1)

= (n2 + n + 1)(X' + Y' + 1)

Với n = 1 thì A = 3

Với n > 1 thì A không phải là số nguyên tố do là tích của 2 số nhân với nhau

20 tháng 2 2019

tai sao n tu buoc 1 xuong buoc 3 duoc (n^3*1)X o dau ra

Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)

⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d

⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d

⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d

⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d

⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d

d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2

⇒d=1⇒d=1 hoặc d=2d=2

- Nếu m,nm,n cùng lẻ thì d=2d=2

- Nếu m,nm,n khác tính chẵn lẻ thì d=1

2 tháng 11 2016

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Lời giải:

Nếu $n$ chẵn thì \(n^4+4^n\) chẵn. Hiển nhiên \(n\neq 0\) nên \(n^4+4^n>2\). Do đó \(n^4+4^n\) không thể là số nguyên tố

Nếu $n$ lẻ:

\(n^4+4^n=(n^2+2^n)^2-2^{n+1}n^2=(n^2+2^n-2^{\frac{n+1}{2}}n)(n^2+2^n+2^{\frac{n+1}{2}}n)\)

Do $n$ lẻ nên \(\frac{n+1}{2}\in\mathbb{N}\). Do đó mỗi thừa số đều là số nguyên dương.

\(n^4+4^n\in\mathbb{P}\Rightarrow \) một trong hai thừa số trên phải bằng $1$. Hiển nhiên

\(n^2+2^n-2^{\frac{n+1}{2}}n=1\)

Bằng quy nạp, ta sẽ CM rằng \(2^\frac{n-1}{2}>n\) với \(n\geq 7\) $(1)$

Thật vậy:

Với \(n=7,8,...\) điều trên đúng. Giả sử nó đúng với \(n=k\) tức là \(2^\frac{k-1}{2}>k\)

Khi đó ta có \(2^{\frac{k+1-1}{2}}=2^{\frac{k-1}{2}}.2^{\frac{1}{2}}>2^{\frac{1}{2}}k>k+1\) với mọi \(k\geq 7\)

Do đó ta có $(1)$ Suy ra với \(n\geq 7 \Rightarrow n^2+2^n-2^{\frac{n+1}{2}}n>n^2>1\) ( vô lý)

\(\Rightarrow n<7\). Thử \(n=1,3,5\)\(n=1\) thỏa mãn. Khi đó \(n^4+4^n=5\in\mathbb{P}\)

Vậy $n=1$

\(\)

4 tháng 2 2018

có cách khác ngắn hơn không bạn?