Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x-4xy+2y-1=0-1\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Suy ra :
\(\hept{\begin{cases}2x-1=1\\1-2y=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(\hept{\begin{cases}2x-1=-1\\1-2y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy ....
a) x-2xy+y=0
=> x-(2xy-y)=0
=> x- y(2x-1)=0
=> 2x-2y(2x-1)=0
=>( 2x-1) -2y(2x-1)=-1
=> (2x-1)(1-2y)=-1
=> ( 2x-1 ; 1-2y ) = ( -1 ;1 ) ; (1;-1 )
=> (x;y)=( 0 ; 0 ) ; ( 1;1)
b) x2 - 2y2 = 1
=> x2 - 1 = 2y2 => (x - 1).(x + 1) = 2y2 (1)
Xét tổng (x - 1) + (x + 1) = 2x là số chẵn => x - 1 ; x + 1 cùng tích chẵn hoặc lẻ. (2)
Từ (1), (2) => x - 1; x + 1 cùng là số chẵn.
=> (x - 1).(x + 1) là số chẵn <=> 2y2 là số chẵn <=> y2 là số chẵn.
Mà y là số nguyên tố => y = 2. Khi đó x = 1 + 2.22 = 9 => x = 3
Vậy x = 3 và y = 2
x2-2y2=1
=>x2=2y2+1
=> x2 lẻ=>x=2k+1
=>4k2+4k+1=1+2y2=>2y2 chia hết cho 4=> y=2
=>x=3
2x2+y2−6x+2xy−2y+5=02x2+y2−6x+2xy−2y+5=0
⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0
⇔(x−2)2+(x+y)2−2(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0
⇔(x−2)2+(x+y
MÁY TÔI LỖI ,SORRY
2x2+y2−6x+2xy−2y+5=02x2+y2−6x+2xy−2y+5=0
⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0
⇔(x−2)2+(x+y)2−2(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0
⇔(x−2)2+(x+y
x+2xy+2y+6=0
x . (1 + 2y) + 2y + 6 = 0
x . (1 + 2y) + 2y + 1 = 5
(1 + 2y) . (x + 1) = 5
Phần còn lại làm đc nốt chưa
x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x - 4xy + 2y - 1 = -1
<=> (2x - 4xy) - (1 - 2y) = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = - 1
<=> 2x - 1 = -1 và 1 - 2y = 1
hoặc 2x - 1 = 1 và 1 - 2y = -1
Bạn tự giải 2 hệ đó ra nhé
x-2xy+y=0
=>x-(2xy-y)=0
=>x-y(2x-1)=0
=>2x-2y(2x-1)=0
=>(2x-1)-2y(2x-1)=-1
=>(2x-1)(1-2y)=-1
=>(2x-1;1-2y) \(\in\)Ư(1)\(\in\){(1;-1)(-1;1)}
=>(x;y)\(\in\){(0;0)(1;1)}
vậy các cặp (x;y) thỏa mãn ......