Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
1. Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
+) \(\frac{x}{2}=-3\Rightarrow x=-6\)
+) \(\frac{y}{5}=-3\Rightarrow y=-15\)
Vậy x = -6
y = -15
2. Ta có:
\(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}=\frac{x}{3}=\frac{y}{7}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
+) \(\frac{x}{3}=-4\Rightarrow x=-12\)
+) \(\frac{y}{7}=-4\Rightarrow y=-28\)
Vậy x = -12
y = -28
1/ \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=-\frac{21}{7}=-3\)
\(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{x}{5}=-3\Rightarrow x=-15\)
2/ \(7x=3y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)
\(\frac{x}{7}=4\Rightarrow x=28\)
\(\frac{y}{3}=4\Rightarrow y=12\)
\(\frac{x}{2}=\frac{y}{5}\)và x + y = -21
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow\)\(\frac{x}{2}=-3\Rightarrow x=-3.2=-6\)
\(\frac{y}{5}=-3\Rightarrow y=-3.5=-15\)
Bài 2 lập 1 đẳng thức trong 4 đẳng thức đã học rồi làm tương tự như trên nhé
a) Vì x-2/x-1 = x+4/x+7 nên: (x-2)(x+7) = (x+4)(x-1)
=> x^2 - 2x + 7x - 14 = x^2 + 4x - x - 4
=> 5x - 14 = 3x - 4
=> 5x - 3x = -4 + 14
=> 2x = 10
=> x = 5
Vậy x = 5
b) Ta có:
+) 4x = 3y => x/3 = y/4 => x/15 = y/20 (*)
+) 7y = 5z => y/5 = z/7 => y/20 = z/28 (**)
Từ (*) và(**) Suy ra x/15 = y/20 = z/28
Áp dunhj tính chất dãy tỉ số bằng nhau và 2x - 3y +z = 6 ta có:
x/15 = y/20 = z/28 = (2x-3y+z) / (2.15-3.20+28) = 6/-2 = -3
Do đó:
+) x/15 = -3 => x = -3.15 = -45
+) y/20 = -3 => y = -3.20 = -60
+) z/28 = -3 => z = -3.28 = -84
Vậy ...
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
+) Xét \(x=0\)
\(\Rightarrow\left(3y+1\right)\left(y+1\right)=21\)
\(\Rightarrow3y+1;y+1\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Mà \(3y+1\) chia \(3\) dư \(1;-2\)
\(\Rightarrow3y+1\in\left\{1;-2;7\right\}\)
\(\Rightarrow y\in\left\{0;-1;2\right\}\)
+) Với \(y=0\)
\(\Rightarrow y+1=1\) ( loại )
+) Với \(y=-1\)
\(\Rightarrow y+1=0\) ( loại )
+) Với \(y=2\)
\(\Rightarrow y+1=3\) ( thỏa mãn )
+) Xét \(x\ne0\)
\(\Rightarrow2^{\left|x\right|}+x\left(x+1\right)\) chẵn
\(\Rightarrow y\) lẻ
\(\Rightarrow2x+3y+1\) chẵn
Mà \(21\) lẻ
\(\Rightarrow x\ne0\) phương trình vô nghiệm
Vậy \(\left(x;y\right)=\left(0;2\right)\)