Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x^2+7x\ge0\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\le-7\end{cases}}\)
Với \(x\ge0\)ta có
\(x^2\le x^2+7x< x^2+8x+16\)
\(\Leftrightarrow x^2\le x^2+7x< \left(x+4\right)^2\)
\(\Rightarrow x^2+7x=\left(\left(x^2\right);\left(x+1\right)^2;\left(x+2\right)^2;\left(x+3\right)^2\right)\)
Thế vô giải được: x = (0; 9)
Phần x<= -7 bạn làm tương tự
nghiem tam thuong x=0; x khac 0
x^2+7x=k^2
delta(x)=49+4k^2=t^2
t^2-(2k)^2=49
(t-2k)(t+2k)=49=1.49=7.7=(-1).(-49)=(-7).(-7)
giai pt nghiem ngyen ra duoc
t=+-25=>k=+-12; t=+-7=>k=0
x=(-7+-t)/2
thay gia tri t vao duoc
x=(9,-16,0,-7)
giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1)
ta có n^2+n-2=k^2-4
<==>(n-1)(n+2)=(k-2)(k+2) (2)
@ nếu n=1 , k=2, đúng
@ nếu n khác 1
ta có n+2<k+2 (từ (1))
==> để (2) xẩy ra thì: n-1>k-2
mà từ (1) ta có k-1>n-1
nên: k-1>n-1>k-2
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1)
vậy chỉ có n=1 là nghiệm!
Giả sử x lớn hơn y
Thấy x2 + 8y lớn hơn x2 và nhỏ hơn x2 + 8x nhỏ hơn (x + 4)2 suy ra nó nằm giữa 2 cái bình phương vừa nêu. Áp dụn chẵn lẻ loại 2 th suy ra 2y = x + 1 thay vào y2 + 8x là ra thôi. Thầy mình ra bài này thấy dễ quá định lên mạng chép mà mấy thằng thông minh không rảnh mà lên mạng. Với cả thay vào y2 + 8x kẹp tiếp bạn nhé rồi xét TH. Xong 😅