K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

\(A=\frac{2x-1}{x-3}=\frac{2\left(x-3\right)+5}{x-3}=2+\frac{5}{x-3}\)

Để Amax thì \(\frac{5}{x-3}\) đạt GTLN

\(\Leftrightarrow x-3=1\)

\(\Leftrightarrow x=1+3\)

\(\Leftrightarrow x=4\)

Vậy Amax\(\Leftrightarrow x=4\)

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

a) 

\(A=\dfrac{2x+3}{x-2}=\dfrac{2\left(x-2\right)+7}{x-2}=2+\dfrac{7}{x-2}\)

Vì x nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{x-2}\) có giá trị nguyên

Khi đó x - 2 ∈ Ư(7) = {-7; -1; 1; 7}

   x-2     -7     -1     1      7
    x     -5      1     2      9

Vậy x ∈ {-5; 1; 2; 9}.

24 tháng 6 2018

\(A=\frac{2x+3}{2x+1}=\frac{2x+1+2}{2x+1}=1+\frac{2}{2x+1}\)

để A đạt gtln thì \(\frac{2}{2x+1}\) lớn nhất

=> 2x + 1 là số nguyên dương nhỏ nhất

=> 2x + 1 = 1

=> 2x = 0

=> x = 0

vậy x = 0 và \(MAX_A=\frac{2\cdot0+3}{2\cdot0+1}=3\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm !$$%

16 tháng 5 2020

a)để A là phân số => x khác 1/2

b) Để A\(\in\)

=> \(2x+5⋮2x-1\)

ta có : 2x-1\(⋮\)2x-1

=>(2x+5)-(2x-1)\(⋮\)2x-1

=>6\(⋮\)2x-1

=> 2x-1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)6}

ta có bảng :

2x-11-12-23-36-6
x10\(\frac{3}{2}\)\(\frac{-1}{2}\)2-1\(\frac{7}{2}\)\(-\frac{5}{2}\)

Mà A \(\in\)Z

Vậy x\(\in\){\(\pm\)1;0;2}

c) ta có :A= \(\frac{2x-5}{2x-1}=\frac{2x-1-4}{2x-1}=\frac{2x-1}{2x-1}-\frac{4}{2x-1}=1-\frac{4}{2x-1}\)

để A lớn nhất

=>\(1-\frac{4}{2x-1}\)lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

12 tháng 4 2021

a)để A là phân số => x khác 1/2

b) Để A∈∈

=> 2x+5⋮2x−12x+5⋮2x−1

ta có : 2x-1⋮⋮2x-1

=>(2x+5)-(2x-1)⋮⋮2x-1

=>6⋮⋮2x-1

=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}

ta có bảng :

2x-11-12-23-36-6
x103232−12−122-17272−52−52

Mà A ∈∈Z

Vậy x∈∈{±±1;0;2}

c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1

để A lớn nhất

=>1−42x−11−42x−1lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

10 tháng 3 2018

a) de A la ps thi 2x-8 ko chia het cho 2x-3

=> 2x-5 ko thuoc uoc cua 5

b) tuong tu 2x-5 thuoc uoc cua 5

12 tháng 4 2021

a)để A là phân số => x khác 1/2

b) Để A∈∈

=> 2x+5⋮2x−12x+5⋮2x−1

ta có : 2x-1⋮⋮2x-1

=>(2x+5)-(2x-1)⋮⋮2x-1

=>6⋮⋮2x-1

=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}

ta có bảng :

2x-11-12-23-36-6
x103232−12−122-17272−52−52

Mà A ∈∈Z

Vậy x∈∈{±±1;0;2}

c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1

để A lớn nhất

=>1−42x−11−42x−1lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất