K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Ta lấy 2 số nguyên tố nhỏ nhất

3 và 2

32 - 2.22  

=9 - 2.4

= 9 - 8

= 1

30 tháng 5 2017

Lấy 2 số nguyên tố nhỏ nhất.

3 và 2

3^2 - 2.2^2

= 9 - 2.4

= 9 - 8

= 1

tk cho Ad Dragon Boy nha! Bạn ấy đúng rồi

1 tháng 6 2017

\(x^{x+2012}\)-\(2^{x+2012}\)-\(x^{x+2010}\)-\(2^{x+2010}\)=0

x2-22=0

\(x^2\)-4 =0

x2 =0+4=4

=> x=2 hoặc là -2

1 tháng 6 2017

\(\Leftrightarrow\left(x-2\right)^{x+2010}\left(\left(x-2\right)^2-1\right)=0\)

ĐK :\(x-2\ge1\Leftrightarrow x\ge1\)phuương trình trở thành 

  • Hoặc : \(\left(x-2\right)^2-1=0\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}TMDK}\)
  • Hoặc : vì theo tính chất lũy thừa nên \(\left(x-2\right)^{x+2010}\ne0\)

KL nghiệm

22 tháng 10 2015

Bạn và phần câu hoi tương tự để tham khảo nhs !

18 tháng 6 2017

Oái gặp bn trùng tên nè!

a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :

\(a^2+a+3⋮a+1\)

\(a+1⋮a+1\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)

\(\Rightarrow3⋮a+1\)

\(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)

Ta có bảng :

\(a+1\) \(1\) \(3\) \(-1\) \(-3\)
\(a\) \(0\) \(2\) \(-2\) \(-4\)
\(Đk\) \(a\in Z\) TM TM TM TM

Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm

b) Ta có :

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy-2y=0\)

\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)

\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)

\(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)

Ta có bảng :

\(x\) \(2x-1\) \(1-2y\) \(y\) \(Đk\) \(x,y\in Z\)
\(0\) \(-1\) \(1\) \(0\) TM
\(1\) \(1\) \(-1\) \(1\) TM

Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :

\(\left(0,0\right);\left(1,1\right)\)

18 tháng 6 2017

b) \(x-2xy+y=0\)

\(\Rightarrow x-\left(2xy-y\right)=0\)

\(\Rightarrow x-y\left(2x-1\right)=0\)

\(\Rightarrow2x-2y\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Ta có:

TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy...................

10 tháng 3 2016

vì \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\Leftrightarrow\)

       \(\left(x+2y\right)^2=0\Leftrightarrow x+2y=0\Leftrightarrow x=2y\left(1\right)\)

       \(\left(y-1\right)^2=0\Leftrightarrow y-1=0\Leftrightarrow y=1\left(2\right)\)

          \(\left(x-z\right)^2=0\Leftrightarrow x-z=0\Leftrightarrow x=z\left(3\right)\)

 \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2y=x=y=2\left(4\right)\)

                      \(\left(4\right)\Leftrightarrow A=2+2+3\times2=10\)

                        

7 tháng 4 2017

a) xy - 2x + y  = 5

   10x + y - 2x + y = 5

   8x + 2y = 5

   8x = 5 - y - y

8 tháng 4 2017

xy -2x+y=5

10x2y=5

8x2y=5

8x=5-y-y

5 tháng 3 2016

x2-2y2=1

<=>x2-1=2y2

<=>(x-1)(x+1)=2y2=y.2y

+)(x-1)(x+1)=2y2

=>x-1=2 và x+1=y2

=>x=3 và x+1=y2

thay x=3 vào x+1=y2=>y2=3+1=4=>y=2(vì y nguyên tố nên ko thể là -2)

do đó (x;y)=(3;2)

+)(x-1)(x+1)=y.2y

=>x-1=y và x+1=2y

=>x=y+1 và x+1=2y

thay x=y+1 vào x+1=2y=>(y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2

khi đó x=2+1=3

Do đó (x;y)=(3;2)

Vậy (x;y)=(3;2)

17 tháng 9 2016

Vì \(\left|x-\frac{2}{5}\right|\ge0;\left|2y+3\right|\ge0;\left(z-2\right)^2\ge0\)

=> \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)

Mà theo đề bài: \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)

=> \(\begin{cases}\left|x-\frac{2}{5}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{2}\\z=2\end{cases}\)

Vậy \(x=\frac{2}{5};y=-\frac{3}{2};z=2\)

17 tháng 9 2016

Ta có :

\(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)

Vì \(\begin{cases}\left|x-\frac{2}{5}\right|\ge0\\\left|2y+3\right|\ge0\\\left(z-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-\frac{3}{2}\\z=2\end{cases}\)

Vậy .................