Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{x+2012}\)-\(2^{x+2012}\)-\(x^{x+2010}\)-\(2^{x+2010}\)=0
x2-22=0
\(x^2\)-4 =0
x2 =0+4=4
=> x=2 hoặc là -2
\(\Leftrightarrow\left(x-2\right)^{x+2010}\left(\left(x-2\right)^2-1\right)=0\)
ĐK :\(x-2\ge1\Leftrightarrow x\ge1\)phuương trình trở thành
- Hoặc : \(\left(x-2\right)^2-1=0\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}TMDK}\)
- Hoặc : vì theo tính chất lũy thừa nên \(\left(x-2\right)^{x+2010}\ne0\)
KL nghiệm
Oái gặp bn trùng tên nè!
a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :
\(a^2+a+3⋮a+1\)
Mà \(a+1⋮a+1\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)
\(\Rightarrow3⋮a+1\)
Vì \(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)
Ta có bảng :
\(a+1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(a\) | \(0\) | \(2\) | \(-2\) | \(-4\) |
\(Đk\) \(a\in Z\) | TM | TM | TM | TM |
Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm
b) Ta có :
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy-2y=0\)
\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)
\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)
Vì \(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)
Ta có bảng :
\(x\) | \(2x-1\) | \(1-2y\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(-1\) | \(1\) | \(0\) | TM |
\(1\) | \(1\) | \(-1\) | \(1\) | TM |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :
\(\left(0,0\right);\left(1,1\right)\)
b) \(x-2xy+y=0\)
\(\Rightarrow x-\left(2xy-y\right)=0\)
\(\Rightarrow x-y\left(2x-1\right)=0\)
\(\Rightarrow2x-2y\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Ta có:
TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy...................
vì \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\Leftrightarrow\)
\(\left(x+2y\right)^2=0\Leftrightarrow x+2y=0\Leftrightarrow x=2y\left(1\right)\)
\(\left(y-1\right)^2=0\Leftrightarrow y-1=0\Leftrightarrow y=1\left(2\right)\)
\(\left(x-z\right)^2=0\Leftrightarrow x-z=0\Leftrightarrow x=z\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2y=x=y=2\left(4\right)\)
\(\left(4\right)\Leftrightarrow A=2+2+3\times2=10\)
a) xy - 2x + y = 5
10x + y - 2x + y = 5
8x + 2y = 5
8x = 5 - y - y
x2-2y2=1
<=>x2-1=2y2
<=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2
thay x=3 vào x+1=y2=>y2=3+1=4=>y=2(vì y nguyên tố nên ko thể là -2)
do đó (x;y)=(3;2)
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
thay x=y+1 vào x+1=2y=>(y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
khi đó x=2+1=3
Do đó (x;y)=(3;2)
Vậy (x;y)=(3;2)
Vì \(\left|x-\frac{2}{5}\right|\ge0;\left|2y+3\right|\ge0;\left(z-2\right)^2\ge0\)
=> \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)
Mà theo đề bài: \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
=> \(\begin{cases}\left|x-\frac{2}{5}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy \(x=\frac{2}{5};y=-\frac{3}{2};z=2\)
Ta có :
\(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
Vì \(\begin{cases}\left|x-\frac{2}{5}\right|\ge0\\\left|2y+3\right|\ge0\\\left(z-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy .................
Ta lấy 2 số nguyên tố nhỏ nhất
3 và 2
32 - 2.22
=9 - 2.4
= 9 - 8
= 1
Lấy 2 số nguyên tố nhỏ nhất.
3 và 2
3^2 - 2.2^2
= 9 - 2.4
= 9 - 8
= 1
tk cho Ad Dragon Boy nha! Bạn ấy đúng rồi