Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương mà a; b là các chữ số
nên a - b chỉ có thể = 1; 4; 9
+) a - b = 1 ; ab nguyên tố => ab = 43
+) a - b = 4 => ab= 73 thỏa mãn
+) a- b = 9 => ab = 90 loại
Vậy ab = 43 hoặc 73
Tìm số tự nhiên \(\overline{abcd}\)sao cho số đó \(⋮\)tích của \(\overline{ab}\)và \(\overline{cd}\)
Đặt ab = m , cd = n
Ta có 10m + n chia hết cho mn
=>n chia hết cho m và 10m chia hết cho n
S đó tìm hết
Bài giải
Ta có :
\(\overline{abcd}⋮\overline{ab.\overline{cd}}\) (1)
\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\) (2)
\(\Rightarrow\overline{cd}⋮\overline{ab}\)
Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)
Thay vào (2) :
\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)
\(\Rightarrow100+k⋮k.\overline{ab}\) (4)
\(\Rightarrow100⋮k\) (5)
Từ (3) và (5) :
\(\Rightarrow k\in\left\{1;2;4;5\right\}\)
Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)
Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:
\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)
Với k=4 thay vào (4) :104 \(⋮\)4.ab hoặc ab = 26 và cd= 104 (loại)
Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :
\(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)
KL : Có hai đáp số : 1734 và 1352
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100\overline{ab}+\overline{bc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100+\dfrac{\overline{bc}}{\overline{ab}}=7\overline{ac}\)
Vì \(\dfrac{\overline{bc}}{\overline{ab}}\le9\) nên \(7\overline{ac}\le109\). \(\Rightarrow9< \overline{ac}< 16\)
\(\Rightarrow\overline{ac}=10;11;12;13;14;15\)
Mà \(7\overline{ac}>100\) nên \(\overline{ac}=15\) hay a = 1; c = 5
\(\Rightarrow\dfrac{\overline{b5}}{\overline{1b}}=5\)
\(\Rightarrow10b+5=5\left(10+b\right)\)
\(\Rightarrow10b+5=50+5b\)
\(\Rightarrow5b=45\)
\(\Rightarrow b=9\)
Vậy, a = 1; b = 9; c = 5.
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
ta có :ab/5 dư 1 => b=1 hoặc 6
Trường hợp 1 :a1-1a=3* => a=5 ;*=6 (thỏa mãn)
Trường hợp 2 :a6-6a=3* ta thấy không có số a nào thỏa mãn
Vậy ab=51 ;*=6
Gọi : ab = m ; ac = n ; bc = d ( m,n,d \(\inℕ^∗\))
Ta có : 100m + d = m . n . 7
=> \(\frac{100m+d}{m}=n.7\)(1)
Vì 7n là số tự nhiên => \(100m+d⋮m\Rightarrow d⋮m\Rightarrow d=mk\left(k\inℕ^∗,k< 10\right)\)
Thay vào (1) ta được : \(\frac{100m+mk}{m}=7n\Rightarrow\frac{m\left(100+k\right)}{m}=7n\Rightarrow100+k=7n\)
Vì \(100< 100+k< 110\)mà \(7n⋮7\Rightarrow100+k⋮7\Rightarrow100+k=105\Rightarrow n=\frac{105}{7}=15\)
=> 1bb5 = 1b . 105
=> 100. 1b + b5 =1b . 100 + 1b . 5
=> b5 = 1b . 5 => 10b + 5 = 50 + 5b => 5b = 45 => b = 9
Vậy a = 1 ; b = 9 và c = 5