K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

9-n chia hết cho n-3

=> 6-n-3 chia hết cho n-3

=> 6 chia hết cho n-3

=> n-3 thuộc 1;-1;2;-2;3;-3;6;-6

=> n thuộc 4;2;5;1;6;0;9;-3

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

5 tháng 2 2017

a) Ta có : n+7 \(⋮\)n+2

\(\Rightarrow\)n+2+5\(⋮\)n+2

mà n+2\(⋮\)n+2

\(\Rightarrow\)5\(⋮\)n+2

\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}

\(\Rightarrow n\in\){-7;-3;-1;2}

b,c,d tương tự

5 tháng 2 2017

giải hết ra giùm mk mk gấp lắm

cảm ơn bạn

10 tháng 3 2020

không biết

mik ko bt câu 1, 2 chỉ bt câu 3 thôi:

c)

  • 3n+7 chia hết cho 2n+1

      => 2.(3n+7) chia hết cho 2n+1

      => 6n+14 chia hết cho 2n+1

  • 2n+1 chia hết cho 2n+1

      => 3.(2n +1) chia hết cho 2n+1

      => 6n+3 chia hết cho 2n+1

Do đó: 6n+14 - (6n+3) chia hết cho 2n+1

       => 6n+14 - 6n - 3 chia hết cho 2n+1

       => ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1

       =>                11               chia hết cho 2n+1

=> 2n+1 thuộc Ư (11) = { 1,11 }

Ta có bảng sau:

2n+1

      1      11
n      0       5

Vậy n thuộc { 0, 5 }

làm hộ?????

10 tháng 3 2020

3)

3n+7\(⋮2n+1\)

vì \(3n+7⋮3n+7\)

=>\(2\left(3n+7\right)⋮3n+7\)

=> 6n+7\(⋮3n+7\)

vì \(2n+1⋮2n+1\)

\(\Rightarrow3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+1⋮2n+1\)

\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)

\(\Rightarrow6⋮2n+1\)

đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé

ta có : n+7 chia hết n+2

=> (n+2)+5 chia hết cho n+2

=> 5 chia hết n+2

=> n+2 c Ư (5) = { 1;5 }

+) n+2 = 1 => n=-1

+) n+2=5 => n=3

vậy n = -1 và n = 3

Ta có:

\(n+7⋮n+2\)

\(\Leftrightarrow\left(n+2\right)+5⋮n+2\)

Vì \(n+2⋮n+2\)

Để \(\left(n+2\right)+5⋮n+2\)

Thì \(5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+2=1\\n+2=5\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=3\end{cases}}}\)

Vậy....

22 tháng 11 2019

a) Ta có:

17 chia hết cho n-3

=>n-3 thuộc Ư(17)

=>Ư(17)={-1;1;-17;17}

Ta có bảng sau:

n-3-11-1717
n24-1420
KLtmtmloạitm

Vậy....

22 tháng 11 2019

b) Ta có:

n+8 chia hết cho n+7

=>n+7+1 chia hết cho n+7

=>1 chia hết cho n+7

=>n+7 thuộc Ư(1)

=>Ư(1)={-1;1}

Xét:

+)n+7=-1=>n=-8(loại)

+)n+7=1=>n=-6(loại)

Vậy ko có gt nào của n thỏa mãn đk trên

11 tháng 2 2019

n+7 chia hết cho n+2

n+2 chia hết cho n+2

suy ra (n+7)-(n+2)chia  hết cho n+2

     n+7-n-2 chia hết cho n+2

  (n-n)+(7-2) chia  hết cho n+2

      5 chia  hết cho n+2 suy ra n+2 thuộc Ư(5)={-1;1;5}

     suy ra n+2 thuộc {-3;-1;3}

Vậy n+2 thuộc {-3;-1;3}

12 tháng 2 2019

\(2n+7⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

4 tháng 2 2020

a) Ta có : n+2\(⋮\)n-3

\(\Rightarrow\)n-3+5\(⋮\)n-3

Vì n-3\(⋮\)n-3 nên 5\(⋮\)n-3

\(\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

+) n-3=-1\(\Rightarrow\)n=2  (t/m)

+) n-3=1\(\Rightarrow\)n=4  (t/m)

+) n-3=-5\(\Rightarrow\)n=-2  (t/m)

+) n-3=5\(\Rightarrow\)n=8  (t/m)

Vậy n\(\in\){-2;2;4;8}

4 tháng 2 2020

b) Ta có : 3n+5\(⋮\)n+1

\(\Rightarrow\)3n+3+2\(⋮\)n+1

\(\Rightarrow\)3(n+1)+2\(⋮\)n+1

Vì 3(n+1)\(⋮\)n+1 nên 2\(⋮\)n+1

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

...

Đến đây tự làm