Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) 3n - 1 chia hết cho n - 2
3n - 6 + 6 - 1 chia hết cho n - 2
3.(n - 2) + 5 chia hết cho n - 2
=> 5 chia hết cho n - 2
=> n - 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n - 2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
b) Giống a
c) n - 4 chia hết cho n - 1
n - 1 - 3 chia hết cho n - 1
=> -3 chia hết cho n - 1
=> n -1 thuộc Ư(-3) = {1; -1; 3 ; -3}
Còn lại giống câu a
d) n2 + 4 chia hết cho n2 + 1
n2 + 1 + 3 chia hết cho n2 + 1
=> 3 chia hết cho n2 + 1
=> n2 + 1 thuộc Ư(3) = {1 ; -1 ; 3; -3}
Còn lại giống a
n - 4 \(⋮\)n - 1
=> n - ( 1 + 3 ) \(⋮\)n - 1
=> ( n - 1 ) + 3 \(⋮\)n - 1
=> 3 \(⋮\)n - 1
=> n - 1 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => n = -2
Vậy : n\(\in\){ 2 ; 0 ; 4 ; ;-2 }
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
n+2 chia hết cho n+1
=>n+1+1 chia hết chi n+1
=>1 chia hết cho n+1
=>n+1=1
=>n=0
b.
2n+7 chia hết cho n+1
=>2(n+1)+5 chia hết cho n+1
=>n+1 thuộc Ư(5)
=>n +1 thuộc {1;5}
=>n thuộc {0;4}
c.2n+1 chia hết cho n-6
=>2(n-6)+13 chia hết cho n-6
=> n-6 thuộc Ư(13)
=>n-6 thuộc {1;13}
=> n thuộc {7;19}
a) Ta có:
17 chia hết cho n-3
=>n-3 thuộc Ư(17)
=>Ư(17)={-1;1;-17;17}
Ta có bảng sau:
Vậy....
b) Ta có:
n+8 chia hết cho n+7
=>n+7+1 chia hết cho n+7
=>1 chia hết cho n+7
=>n+7 thuộc Ư(1)
=>Ư(1)={-1;1}
Xét:
+)n+7=-1=>n=-8(loại)
+)n+7=1=>n=-6(loại)
Vậy ko có gt nào của n thỏa mãn đk trên