Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\sqrt{x}=0\) và \(\sqrt{x}-2=0\)
\(\Rightarrow x=0\) và \(\sqrt{x}=2\)
\(\Rightarrow x=0\) và \(x=4\)
ĐK : \(x\ge0\)
\(x-2\sqrt{x}=0\Rightarrow x=2\sqrt{x}\)
Bình phương hai vế ta có :
\(x^2=4x\Leftrightarrow x^2-4x=0\)
\(\Rightarrow x(x-4)=0\Rightarrow\hept{\begin{cases}x=0\\x=4\end{cases}}\)
\(x-2\sqrt{x}=0\)\(\Leftrightarrow x=2\sqrt{x}\)
\(\Leftrightarrow x^2=\left(2\sqrt{x}\right)^2\)\(\Leftrightarrow x^2=4x\)
\(\Leftrightarrow x^2-4x=0\)\(\Leftrightarrow x\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)( thoả mãn điều kiện )
Vậy \(x=0\)hoặc \(x=4\)
x - 2\(\sqrt{x}\) = 0
<=> \(\sqrt{x}\)(\(\sqrt{x}\)- 2) = 0
<=> x = 0 hoặc x = 4
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}^2-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy x = 0 hoặc x = 4
\(x-2\sqrt{x}=0\)
<=> \(\sqrt{x}.\sqrt{x}-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Đkiện. X >=0.
Nhóm căn x ra ngoài. Ta được căn x nhân với ( căn x - 2)=0.
Có 2 trường hợp.
1) căn x =0 suy ra x bằng 0.
2) căn x bằng 2 suy ra x bằng 4.
Cả 2 đều thỏa mãn. Vậy x bằng...
\(x-2.\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
x−2.√x=0
⇔√x2−2√x=0
⇔√x(√x−2)=0
⇔[√x=0√x−2=0⇔[x=0√x=2
⇔[x=0;x=4
Đk:\(x\ge0\)
\(x-2\sqrt{x}=0\Leftrightarrow x=2\sqrt{x}\)
Bình phương 2 vế ta có:
\(x^2=4x\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)