Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 1)5 = -243
<=> (x - 1)5 = (-3)5
=> x - 1 = -3
=> x = -2
b) \(x-2\sqrt{x}=0\)
\(\sqrt{x^2}-2\sqrt{x}=0\)
\(\sqrt{x}.\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a, \(\left(x-1\right)^5=-243\)
\(\Leftrightarrow\left(x-1\right)^5=-3^5\)
\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)
b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\sqrt{x}=0\) và \(\sqrt{x}-2=0\)
\(\Rightarrow x=0\) và \(\sqrt{x}=2\)
\(\Rightarrow x=0\) và \(x=4\)
ĐK : \(x\ge0\)
\(x-2\sqrt{x}=0\Rightarrow x=2\sqrt{x}\)
Bình phương hai vế ta có :
\(x^2=4x\Leftrightarrow x^2-4x=0\)
\(\Rightarrow x(x-4)=0\Rightarrow\hept{\begin{cases}x=0\\x=4\end{cases}}\)
Đk:\(x\ge0\)
\(x-2\sqrt{x}=0\Leftrightarrow x=2\sqrt{x}\)
Bình phương 2 vế ta có:
\(x^2=4x\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy x = 0 hoặc x = 4
\(x-2\sqrt{x}=0\)
<=> \(\sqrt{x}.\sqrt{x}-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
x - 2\(\sqrt{x}\) = 0
<=> \(\sqrt{x}\)(\(\sqrt{x}\)- 2) = 0
<=> x = 0 hoặc x = 4
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}^2-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
\(x-2\sqrt{x}=0\)\(\Leftrightarrow x=2\sqrt{x}\)
\(\Leftrightarrow x^2=\left(2\sqrt{x}\right)^2\)\(\Leftrightarrow x^2=4x\)
\(\Leftrightarrow x^2-4x=0\)\(\Leftrightarrow x\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)( thoả mãn điều kiện )
Vậy \(x=0\)hoặc \(x=4\)
x−2.√x=0
⇔√x2−2√x=0
⇔√x(√x−2)=0
⇔[√x=0√x−2=0⇔[x=0√x=2
⇔[x=0;x=4
\(x-2.\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...