K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 2 2018

Lời giải:

Ta có: \(19^2=361\equiv 10\pmod {27}\)

\(\Rightarrow 19^3=19^2.19\equiv 10.19\equiv 1\pmod {27}\)

Suy ra:

\(7^3=19\pmod {27}\Rightarrow 7^{9}\equiv 19^3\equiv 1\pmod {27}\)

Vậy \(19^3\equiv 7^9\equiv 1\pmod {27}\)

Khi đó:

\(19^{2008}+7^{2008}=(19^{3})^{669}.19+(7^9)^{223}.7\)

\(\equiv 1^{669}.19+1^{223}.7\equiv 19+7\equiv 26\pmod {27}\)

Vậy \(19^{2008}+7^{2008}\) chia $27$ dư $26$

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$

$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$

$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$

$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$

$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$

11 tháng 1 2016

de sai roi tick minh nha

11 tháng 1 2016

bạn dùng đồng dư thức nhé

21 tháng 1 2016

làm sao ra 2 vậy bạn

 

22 tháng 1 2016

cái bài này = 6 hay 4 v